平码五不中公式规律
  • / 11
  • 下载费用:30 金币  

一种飞机类目标微多普勒纹理特征提取方法.pdf

关 键 ?#21097;?/dt>
一种 飞机 类目 多普勒 纹理 特征 提取 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201610834997.X

申请日:

2016.09.20

公开号:

CN106483513A

公开日:

2017.03.08

当前法律状态:

授权

有效性:

有权

法?#19978;?#24773;: 授权|||实质审查的生效IPC(主分类):G01S 7/41申请日:20160920|||公开
IPC分类号: G01S7/41 主分类号: G01S7/41
申请人: 西安电子工程研究所
发明人: 罗丁利; 杨磊; 陈尹翔; 王勇; 王亚军; 徐丹蕾
地址: 710100 陕西省西安市长安区凤栖东路
优先权:
专利代理机构: 西北工业大学专利中心 61204 代理人: 刘新琼
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201610834997.X

授权公告号:

||||||

法律状态公告日:

2018.10.09|||2017.04.05|||2017.03.08

法律状态类型:

授权|||实质审查的生效|||公开

摘要

本发明涉及一种基于微多普勒纹理特征的飞机类目标特征提取方法,能够实现对三类典型飞机目标的有效分类识别。本算法首先通过杂波?#31181;?#19982;机身分量?#31181;?#21450;频谱搬移,获得微多普勒谱,然后提取LBP值及其归一化直方图,用于表征微多普勒谱的纹理特性。通过提取对姿态不敏感的纹理特性,具有更好的泛化能力,运算量适中,便于工程应用。

权利要求书

1.一种飞机类目标微多普勒纹理特征提取方法,其特征在于步骤如下:
步骤1:预处理
1a):目标原始时域回波序列x(k)进行FFT及FFTSHIFT,获得目标的原始频谱X(k),记录
机身频谱的位置k0;
1b):采用CLEAN算法对X(k)进?#26800;?#29289;杂波与机身分量?#31181;疲?#33719;得新的目标时域回波序
列xclean(k);然后对xclean(k)进行K点汉明窗FFT及FFTSHIFT、求模,获得目标的纯净微多普
勒谱Xclean(k);其中,K为序列长度;
1c):将目标微多普勒谱Xclean(k)进行搬移,搬移的大小为方向为的
符号,为负时左移,正时右移,最后将机身分量搬?#39057;?#38646;号滤波器,获得新序列Xclean_shift
(k),其中k=1,2,...,K;
1d):比较多普勒支撑区最大范围与脉冲重复频率fr的大小:当fd_max大于等
于fr时,微多普勒谱混叠,这时对Xclean_shift(k)序列不需要截取,将序列直接赋值给微多普
勒序列Xmicro_doppler(k)进行后续处理,此序列的长度为Knew=K,其中k=1,2,...,Knew;当
fd_max小于fr时,需要对Xclean_shift(k)序列进行截取,起始位置为截取长
度为形成新的序列Xmicro_doppler(k),此序列长度为Knew,其中k=1,
2,...,Knew;
步骤2:微多普勒谱LBP处理
2a):确定LBP窗口宽度N,取被检测多普勒单元左右两侧各个多普勒单元作为参考单
元,同时令i=1;
2b):选取Xmicro_doppler(k)数组中第个单元作为当前被测多普勒单元,分别将每一
个参考单元的值与该检测单元的值进行比较:若参考单元的值大于检测单元的值,则将该
参考单元的值标记为1,否则标记为0;N个参考单元的值经比较后产生一个N位的二进制数,
将其转化为十进制,即得到该被测多普勒单元的LBP值,将该值存在yLBP(i)数组中;
2c)?#21495;?#26029;i是否等于Knew-N,如果否,将i=i+1,转入2b),是则转入2d);
2d):形成新的数组yLBP(i),数组长度为Knew-N,LBP值的取值范围为0~2N-1;
步骤3:归一化直方图提取
3a)LBP值次数统计
统计数组yLBP(i)中各值出现的次数,存入数组count(j)中,count(j)表征j出现的次
数,j=0,1,2,...,2N-1;
3b)归一化
对count(j)进行归一化,获得表征纹理特征的归一化直方图hist(j)。
<mrow> <mi>h</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msup> <mn>2</mn> <mi>N</mi> </msup> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow>
2.根据权利要求1所述的一种飞机类目标微多普勒纹理特征提取方法,其特征在于N为
6或者8。

说明书

一种飞机类目标微多普勒纹理特征提取方法

技术领域

本发明属于信号处理领域,具体为一种飞机类目标微多普勒纹理特征提取方法,
该方法通过一系?#24615;?#22788;理后提取目标微多普勒的LBP(Local Binary Pattern,局部二进制
模式)直方图纹理特征,能够对常见的三种典型的飞机类目标:直升机、螺旋桨和喷气式实
现有效分类识别,适合于窄带体制?#29366;鎩?br />

背景技术

随着?#29366;?#25216;术的发展,?#29366;?#30340;基本功能已经从最初的目标检测与位置参数估计发
展到?#29366;?#30446;标分类识别阶段,其中窄带?#29366;?#30446;标分类识别是现代?#29366;?#30446;标分类识别的一个
重要?#31181;В?#32780;典型的三类飞机目标分类识别在军用和民用方面都有着迫切的需求。对于典
型的三类飞机目标分类识别任务来讲,主要思路是通过提取发动机调制(JEM)特征判断目
标的属性。三类飞机均存在旋转?#32771;号?#27668;式飞机的发动机引擎、直升机的主旋翼与尾翼以
及螺旋桨的桨叶,?#29366;?#22238;波会被这些旋转?#32771;?#25152;调制,被调制的回波频谱由三部分构成:机
身分量、翼毂分量以及旋翼分量,翼毂分量及旋翼分量通常称其为微多普勒谱或者JEM调制
谱。三类飞机由于叶片数目、叶片半径以及旋转速度的不同,导致其回波微多普勒特征均有
其自身特点,通过提取这些微多普勒谱差异,能够实现对三类飞机的有效分类识别。

针对如何提取微多普勒谱相应特征的问题,目前通常有三种方法:

方法1:时域特征法。提取归一化时域回波的二阶矩/三阶矩、时域熵、幅度方差等
特征。当JEM回波信噪比很强时,该方法有着良好的分类性能,但是飞机在飞行过程中,由于
存在姿态变化,导致JEM时域回波存在显著起伏,导致该方法的泛化能力不理想。

方法2:频域特征法。提取归一化微多普勒谱二阶矩/三阶矩、频谱熵、幅度方差等
特征。该方法同样?#35272;?#20110;回波信噪比,存在时域特征法的泛化能力不足问题。

方法3:时域回波协方差矩阵分解。对时域回波协方差矩阵进行特征值分解,然后
提取特征值的相应特征,包括大特征值的数目、熵特征?#21462;?#35813;方法性能较好,但存在协方差
矩阵分解,运算量太大,工程上难以实时实现。

本发明通过提取微多普勒谱的LBP纹理信息,有效避免了方法1和方法2的推广能
力不足问题以及方法3的运算量过大的问题,具有良好的泛化能力,在微多普勒信噪比较低
时仍然有着良好的分类性能,对?#29366;?#31995;统参数较不敏感,运算量适中,便于工程实现。

发明内容

要解决的技术问题

本发明的目的在于针对上述已有方法的缺点,提出了一种飞机类目标微多普勒纹
理特征提取方法,即通过一系?#24615;?#22788;理后提取目标微多普勒的LBP直方图纹理特征,然后用
PCA(Principal Component Analysis)进行降维及分类器,实现对三类飞机的有效区分,此
方法运算量较小,泛化能力强。

技术方案

一种飞机类目标微多普勒纹理特征提取方法,其特征在于步骤如下:

步骤1:预处理

1a):目标原始时域回波序列x(k)进行FFT及FFTSHIFT,获得目标的原始频谱X(k),
记录机身频谱的位置k0;

1b):采用CLEAN算法对X(k)进?#26800;?#29289;杂波与机身分量?#31181;疲?#33719;得新的目标时域回
波序列xclean(k);然后对xclean(k)进行K点汉明窗FFT及FFTSHIFT、求模,获得目标的纯净微
多普勒谱Xclean(k);其中,K为序列长度;

1c):将目标微多普勒谱Xclean(k)进行搬移,搬移的大小为方向为
的符号,为负时左移,正时右移,最后将机身分量搬?#39057;?#38646;号滤波器,获得新序列
Xclean_shift(k),其中k=1,2,...,K;

1d):比较多普勒支撑区最大范围与脉冲重复频率fr的大小:当fd_max大
于等于fr时,微多普勒谱混叠,这时对Xclean_shift(k)序列不需要截取,将序列直接赋值给微
多普勒序列Xmicro_doppler(k)进行后续处理,此序列的长度为Knew=K,其中k=1,2,...,Knew;
当fd_max小于fr时,需要对Xclean_shift(k)序列进行截取,起始位置为截取
长度为形成新的序列Xmicro_doppler(k),此序列长度为Knew,其中k=1,
2,...,Knew;

步骤2:微多普勒谱LBP处理

2a):确定LBP窗口宽度N,取被检测多普勒单元左右两侧各个多普勒单元作为参
考单元,同时令i=1;

2b):选取Xmicro_doppler(k)数组中第个单元作为当前被测多普勒单元,分别将
每一个参考单元的值与该检测单元的值进行比较:若参考单元的值大于检测单元的值,则
将该参考单元的值标记为1,否则标记为0;N个参考单元的值经比较后产生一个N位的二进
制数,将其转化为十进制,即得到该被测多普勒单元的LBP值,将该值存在yLBP(i)数组中;

2c)?#21495;?#26029;i是否等于Knew-N,如果否,将i=i+1,转入2b),是则转入2d);

2d):形成新的数组yLBP(i),数组长度为Knew-N,LBP值的取值范围为0~2N-1;

步骤3:归一化直方图提取

3a)LBP值次数统计

统计数组yLBP(i)中各值出现的次数,存入数组count(j)中,count(j)表征j出现的
次数,j=0,1,2,...,2N-1;

3b)归一化

对count(j)进行归一化,获得表征纹理特征的归一化直方图hist(j)。


N为6或者8。

有益效果

本发明提出的一种基于微多普勒纹理特征的飞机类目标特征提取方法,能够实现
对三类典型飞机目标?#30446;?#38752;精细分类识别。本发明解决了传统时域特征、频域特征、协方差
分解等方法存在的信噪比敏感性及推广性差、运算量大?#28909;?#28857;,巧妙地提取了微多普勒谱
的纹理特征,通过采用杂波?#31181;啤?#39057;谱搬?#39057;?#39044;处理、提取微多普勒谱的一维LBP值以及归
一化直方图,为后续PCA分解及分类器设计提供良好的输入数据,提高了飞机类目标的识别
?#21097;?#20855;有良好的泛化能力。

附图说明

图1(a)是目标所处距离单元的原始频谱;

图1(b)是去除地物杂波与机身分量后的频谱;

图1(c)将机身分量搬?#39057;?#38646;频的频谱;

图2是当前多普勒单元的LBP值计算方法原理框图;

图3 LBP直方图提取方法;

图4本发明的流程图

具体实施方式

现结合实施例、附图对本发明作进一步描述:

实现本发明的技术思路是:首先对单个CPI(Coherent Processing Interval)目
标所处距离单元的时域回波进?#26800;?#29289;杂波与机身分量?#31181;?#21450;频谱搬移,使得机身分量位于
零号滤波器通道;接下来对该CPI的频谱进行一维LBP值求取、直方图统计及归一化,最后获
得表征纹理特征的归一化直方图,用于后续处理。

本发明实现步骤如下:

1)预处理

为了尽量完整地保持目标回波频域特征,采用CLEAN算法对地物杂波与机身分量
进行?#31181;?#20197;及频谱搬移,获得目标的微多普勒谱。

1a)地物杂波?#31181;?br />

提取零多普勒通道的幅度与相位,然后重构地物杂波,减去即可,获得目标时域回
波;

1b)机身分量

在目标时域回波的基础上,通过提取机身分量的幅度与相位,然后重构机身分量
回波,减去即可,获得目标的微多普勒回波;

1c)将新的时域回波进行加窗FFT处理,获得JEM调制谱,然会将该频谱搬?#39057;?频。

2)微多普勒谱LBP处理

微多普勒谱是一维数组,记数组为Xmicro_doppler(k),其中,k=1,2,...Knew,Knew为此
数组长?#21462;?br />

参?#21363;?#21475;宽度为N,平均分布在被测多普勒单元左右两侧。

将该被测单元的左侧N/2个参考单元与?#20063;郚/2个参考单元的强度与其进行比较,
若两侧强度大于被测单元强度值,则该点的位置被标记为1,否则为0。N个邻域内的点经比
较可产生N位二进制数,将其十进制化,即可得到该被测单元的LBP值;

依次对被测单元进行LBP值求取,获得LBP数组yLBP(j),j=1,2,...,Knew-N。此数组
的长度为:Knew-N,LBP值的取值范围为0~2N-1。

3)归一化直方图提取

3a)统计LBP值出现的次数,存入数组count(j)中,count(j)表征j出现的次数。

3b)对count(j)进行归一化,获得归一化直方图hist(j)。

本发明的具体实现步骤如下:

?#29366;?#24037;作参数为:波长为λ;脉冲重复频率为fr;CPI内的脉冲数目为K;目标原始时
域回波序列为:x(k),其中k=1,2,...,K,K为序列长度,K取值为2的幂。

步骤1,预处理,参照图1(a),图1(b),图1(c)。

预处理的目的是为了尽量完整地保持目标微多普勒回波的频域特征,采用CLEAN
算法对地物杂波与机身分量进行?#31181;?#20197;及频谱搬移,消除地物杂波以及机身分量对目标微
多普勒谱的影响,获得目标纯净的微多普勒谱。

1a)参考图1(a);

对目标原始时域回波序列x(k)进行FFT及FFTSHIFT,获得目标的原始频谱X(k),记
录机身频谱的位置k0,如图1(a)所?#23613;?br />

1b)参考图1(b);

为了消除地物杂波以及机身分量对目标微多普勒谱的影响,通过CLEAN算法对地
物杂波与机身分量进行?#31181;疲?#33719;得新的目标时域回波序列xclean(k);然后对xclean(k)进行K
点汉明窗FFT及FFTSHIFT、求模,获得目标的纯净微多普勒谱Xclean(k)。图1(b)给出?#35828;?#29289;及
机身分量?#31181;?#21518;的微多普勒频谱。

1c)参考图1(c)。

为了后续分析方便,将目标微多普勒谱Xclean(k)进行搬移,搬移的大小为
方向为的符号,为负时左移,正时右移,最后将机身分量搬?#39057;?#38646;号滤波
器,获得新序列Xclean_shift(k),其中k=1,2,...,K。

1d)对频谱序列进行截取

由于飞机旋翼的叶端速度v通常为230m/s,因此微多普勒的最大支撑区为
?#23435;状?#30340;工作波长,即多普勒支撑区最大范围为当fd_max大于等于fr时,微
多普勒谱混叠,这时对Xclean_shift(k)序列不需要截取,将序列直接赋值给微多普勒序列
Xmicro_doppler(k)进行后续处理,此序列的长度为Knew=K,其中k=1,2,...,Knew;当fd_max小于
fr时,需要对Xclean_shift(k)序列进行截取,起始位置为截取长度为
形成新的序列Xmicro_doppler(k),此序列长度为Knew,其中k=1,2,...,
Knew。

步骤2,微多普勒谱LBP处理,参照图2。

经过下列处理,获得微多普勒序列Xmicro_doppler(k)各单元的LBP值。

2a)确定LBP窗口宽度N,通常N为6或者8,取被检测多普勒单元左右两侧各个多
普勒单元作为参考单元,同时令i=1。

2b)选取Xmicro_doppler(k)数组中第个单元作为当前被测多普勒单元,分别将每
一个参考单元的值与该检测单元的值进行比较,若参考单元的值大于检测单元的值,则将
该参考单元的值标记为1,否则标记为0。N个参考单元的值经比较可产生一个N位的二进制
数,将其转化为十进制,即得到该被测多普勒单元的LBP值,将该值存在yLBP(i)数组中。

2c)判断i是否等于Knew-N,如果否,将i=i+1,转入2b),是则转入2d)。

2d)形成新的数组yLBP(i),数组长度为Knew-N,LBP值的取值范围为0~2N-1。

步骤3,归一化直方图提取,参照图3。

对数组yLBP(i)进行LBP值统计及归一化,获得本次CPI的LBP直方图。

3a)LBP值次数统计

统计数组yLBP(i)中各值出现的次数,存入数组count(j)中,count(j)表征j出现的
次数,j=0,1,2,...,2N-1。

3b)归一化

对count(j)进行归一化,获得表征纹理特征的归一化直方图hist(j)。


本发明充分利用飞机类目标旋翼调制谱的周期性特点,通过提取局部二进制特征
及其直方图,表征微多普勒谱的纹理特性,为飞机类目标的分类识别提供了一种新的特征
提取方法。

关于本文
本文标题:一种飞机类目标微多普勒纹理特征提取方法.pdf
链接地址:http://www.pqiex.tw/p-5994585.html
关于我们 - 网站声明 - 网?#38236;?#22270; - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 注册免费送体验金网站 结绳记加盟赚钱吗 百亿游戏注册 黑桃梅方怎么看路子 火龙果计划软件安卓 奔驰宝马转盘看版 如何合理的买竞彩足球 浙江快乐12官网 AG竞技狂热电子 重庆时时彩34567技巧