平码五不中公式规律
  • / 11
  • 下载费用:30 金币  

一种基于高阶累计量的波达快速估计方法.pdf

关 键 ?#21097;?/dt>
一种 基于 累计 快速 估计 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201610853071.5

申请日:

2016.09.26

公开号:

CN106483193A

公开日:

2017.03.08

当前法律状态:

授权

有效性:

有权

法?#19978;?#24773;: 授权|||实质审查的生效IPC(主分类):G01N 29/024申请日:20160926|||公开
IPC分类号: G01N29/024; G01S5/22; G01S15/88 主分类号: G01N29/024
申请人: 东南大学
发明人: 宋文博; 姜龙玉; 张喆; 伍家松; 舒华忠
地址: 210096 江苏省南京市四牌楼2号
优?#28909;ǎ?/td>
专利代理机构: 江苏永衡昭辉律师事务所 32250 代理人: 杨楠
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201610853071.5

授权公告号:

||||||

法律状态公告日:

2019.01.08|||2017.04.05|||2017.03.08

法律状态类型:

授权|||实质审查的生效|||公开

摘要

本发明公开了一种基于高阶累计量的波达快速估计方法,属于信号处理技术领域。本发明针对现有基于高阶累积量的阵列信号处理方法所存在的计算复杂度过高的问题,利用线性时间的奇异值分解方法进行信号子空间的近似,从而大幅缩短算法的执行时间并大幅节约算法的占用内存。本发明还公开了一种基于声线传播时间层析的海洋声层析方法?#32422;?#19968;种定位方法。本发明在保证较高分辨能力的同时,可大幅降低现有技术的时间复杂度与空间复杂度,减少硬件资源的消耗并提高信号处理的实时性。

权利要求书

1.一种基于高阶累计量的波达快速估计方法,利用等间距直线传感器阵列所接收到的
观测数据,估计出信号源的波达方向及波达时间;该方法包括以下步骤:步骤A、对所述观测
数据做傅里叶变换后进行空域-频域?#20132;?#22788;理,并构造出空域-频域?#20132;?#22788;理后信号的四阶
累积量矩阵
步骤B、根据所述四阶累积量矩阵构建观测数据的信号子空间;
步骤C、根据观测数据的信号子空间,估计出信号源的波达方向及波达时间;其特征在
于,所述步骤B具体如下:
步骤B1、对矩阵的全部n个列向量分别按照概率进行随
机抽样,得到c个列向量,其中表示矩阵的第i列,||||F表示Frobenius-范数,具体抽取
过程:产生0~1的随机数,若该随机数小于前i列概率之和且大于前i-1列概率之和,则第i
列被抽中,按此方法进行c次,抽取出c个列向量,1<c<n;之后对抽取出的c个列向量进行缩
放调整,第t次抽样抽取出的列向量的缩放因子为:将调整后的列向
量组成矩阵
步骤B2、对矩阵进行特征值分解;
步骤B3、利用矩阵较大的前k个特征值对应的特征向量y,计算得到矩阵的k
个特征向量h;其中特征向量y与特征向量h之间的关系为:
其中,ht表?#38236;趖个特征向量h,yt表?#38236;趖个特征向量y,表示矩阵的第t个特征值,k
为传感器阵列所接收到的信号个数的平方;
步骤B4、以这k个特征向量h张成的空间近似作为观测数据的信号子空间。
2.如权利要求1所述方法,其特征在于,42/∈2≤c<n,或者4η2/∈2≤c<n;其中,
k为传感器阵列所接收到的信号个数的平方,?#26102;?#31034;预期的近似误差
大小,δ表示结果的误差不满足预期的概?#30465;?br />
3.如权利要求1所述方法,其特征在于,所述空域-频域?#20132;?#20013;的频域?#20132;?#20351;用频域子
带平均方法。
4.一种基于声线传播时间层析的海洋声层析方法,利用声音在海洋中传播速度的变化
来反演海洋环境?#38382;?#20854;特征在于,首先利用权利要求1~3任一项所述方法对从声传感器
阵列所接收到的多路径传播声信号进行波达估计,从而分离出每一条声线路径;然后根据
声线路径的到达时间反演出海洋环境?#38382;?br />
5.一种定位方法,其特征在于,首先利用权利要求1~3任一项所述方法进行波达方向
估计,然后利用估计出的波达方向确定信号源的位置。

说明书

一种基于高阶累计量的波达快速估计方法

技术领域

本发明涉及一种波达估计方法,尤其涉及一种基于高阶累计量的波达快速估计方
法,属于信号处理技术领域。

背景技术

在浅水中,声波的传播过程总是伴随着在海洋表面或水中?#21040;?#22788;的反射或折射现
象。因此声波是在多路径模型中传播的。多路径传播特性在浅水中有广泛地应用,例如主动
声纳,海洋声层析术与声源定位等。多路径传播可以覆盖更多的海洋环境,但同时产生的相
干信号会对处理造成干扰。因此需要对接收信号进行分离处理。

这个问题吸引了相关研?#31354;?#26497;大的关注并提出了很多有价值的算法。在这些算法
中,基于子空间类算法由于高分辨能力而受到研?#31354;?#30340;重视。特别是由Schmidt[Schmidt R
O.Multiple emitter location and signal parameter estimation[J].Antennas and
Propagation,IEEE Transactions on,1986,34(3):276-280.]提出的多重信号分离算法
(Multiple Signal Classification:MUSIC),这是十?#20540;?#22411;的基于子空间方法。该算法的
基本思想是通过对接收数据的协方差矩阵进行特征分解,构成与代表信号部分的信号子空
间正交的噪声子空间。该算法可?#26434;?#26469;分离非相干的窄带信号线路径。但是在多路径传播
模型中由于接收的线路径是发射信号的不同时延版本,因此它们是高度相关甚?#26009;?#24178;的。

为了可以有效地分离高度相关甚?#26009;?#24178;的宽带信号,Jiang等人在“Raypath
separation with high resolution processing”一文[Jiang L,Aulanier F,Le TouzéG,
et al.Raypath separation with high resolution processing,2011]中提出一种高分
辨率方法:?#20132;?#30340;主动宽带信号分离算法(smoothing-MUltiple SIgnal Classification
Active Large band:s-MUSICAL)。它结合了主动宽带算法与空域-频域?#20132;?#31639;法,并且可以
同时在到达角-到达时间域内分离信号。实验表明s-MUSICAL算法极大地改善了信号分离表
现,尤其是到达角度相差极小的两个线路径。s-MUSICAL 算法建立在环?#25345;?#20165;存在高斯白
噪声的假设之上,但在实际海洋环?#25345;?#23384;在谱未知的高斯有色噪声。

近期,Jiang提出了一种高阶主动宽带MUSIC算法(参见公开日为2016/6/8的中国
专利CN 105652264A),可以分离受高斯色噪声污染的线路径。它利用四阶累积量,表达出非
高斯过程的有价值信息。该方法主要步骤为:步骤A、对观测数据做傅里叶变换后进行空域-
频域?#20132;?#22788;理,并构造出空域-频域?#20132;?#22788;理后信号的四阶累积量矩阵步骤B、根据所述
四阶累积量矩阵利用奇异值分解的方法构建观测数据的信号子空间;步骤C、根据观测数
据的信号子空间,估计出信号源的波达方向及波达时间。实验表明该算法可以更有效地抑
制噪声进而获得更准确的结果。但是在处理过程?#34892;?#35201;对四阶累积量矩阵进行奇异值分
解。奇异值分解(Singular Value Decomposition:SVD)处理步骤需要大量的计算成本,包
括运算时间与内存空间。对矩阵进行SVD处理过程需要的时间和空间与矩阵规模成超线性
关系。这无法满足实际应用中的实时性要求。唐建红等人在“改进的基于四阶累积量的
MUSIC算法”(唐建红、司锡才与初萍,改进的基于四阶累积量的MUSIC算法.?#20302;?#24037;程与电子
技术,2010.32(2):第256-259页)一文中提出一种改进方法,朱敏等人在“一种新的基于四
阶累积量的DOA估计算法”(朱敏与何培宇,一种新的基于四阶累积量的DOA估计算法.四川
大学学报(自然科学版),2011.48(2):第343-348页.)一文中也提出一种类似的改进方法,
均利用四阶累积量矩阵自身的结?#22266;?#24615;,根据接收?#23435;?#22343;匀线阵的情况,通过观察矩阵内
部的冗余进而缩小矩阵规模以降低运算量。但这样的方法与阵列情况等因素有关,不同阵
列类型的情况下有失效的可能。因此需要一种适用性较强的改进策略,增强基于高阶累积
量的信号分离算法的实时性。

发明内容

本发明所要解决的技术问题在于克服现有技术不足,提供一种基于高阶累计量的
波达快速估计方法,在保证较高分辨能力的同时,可大幅降低现有技术的时间复杂度与空
间复杂度,减少硬件资源的消耗并提高信号处理的实时性。

本发明具体采用以下技术方案解决上述技术问题:

一种基于高阶累计量的波达快速估计方法,利用等间距直线传感器阵列所接 收
到的观测数据,估计出信号源的波达方向及波达时间;该方法包括以下步骤:

步骤A、对所述观测数据做傅里叶变换后进行空域-频域?#20132;?#22788;理,并构造出空域-
频域?#20132;?#22788;理后信号的四阶累积量矩阵

步骤B、根据所述四阶累积量矩阵构建观测数据的信号子空间;

步骤C、根据观测数据的信号子空间,估计出信号源的波达方向及波达时间;

所述步骤B具体如下:

步骤B1、对矩阵的全部n个列向量分别按照概率进
行随机抽样,得到c个列向量,其中表示矩阵的第i列,||||F表示Frobenius-范数,具体
抽取过程:产生0~1的随机数,若该随机数小于前i列概率之和且大于前i-1列概率之和,则
第i列被抽中,按此方法进行c次,抽取出c个列向量,1<c<n;之后对抽取出的c个列向量进行
缩放调整,第t次抽样抽取出的列向量的缩放因子为:将调整后的列
向量组成矩阵

步骤B2、对矩阵进行特征值分解;

步骤B3、利用矩阵较大的前k个特征值对应的特征向量y,计算得到矩阵
的k个特征向量h;其中特征向量y与特征向量h之间的关系为:
其中,ht表?#38236;趖个特征向量h,yt表?#38236;趖个特征向量y,
表示矩阵的第t个特征值,k为传感器阵列所接收到的信号个数的平方;

步骤B4、以这k个特征向量h张成的空间近似作为观测数据的信号子空间。

上述波达快速估计方法可广泛用于雷达、声纳、地震监测等领域,以下为两个具体
应用方案:

一种基于声线传播时间层析的海洋声层析方法,利用声音在海洋中传播速度的变
化来反演海洋环境?#38382;?#39318;先利用以上技术方案所述方法对从声传感器阵列所接收到的多
路径传播声信号进行波达估计,从而分离出每一条声线路径;然后根据声线路径的到达时
间反演出海洋环境?#38382;?br />

一种定位方法,首先利用以上技术方案所述方法进行波达方向估计,然后利用估
计出的波达方向确定信号源的位置。

相比现有技术,本发明具有以下有益效果:

和基于二阶统计量的传统技术相比,本发明对实际应用场景中成分复杂的环境噪
声有明显的?#31181;?#25928;果,同时可以在传感器阵列阵元数目小于入射线路径数目的情况下正确
分离线路径。更重要的是,本发明与现有基于四阶累积量的方法相比,仅需占用极少的计算
时间与内存空间,为基于高阶统计量原理的信号分离技术应用于实时?#20302;程?#20379;了可行性。

附图说明

图1为本发明方法的流程示意图;

图2a~图2c为本发明方法与现有方法的对比实验结果。

具体实施方式

下面结合附图对本发明的技术方案进行详细说明:

本发明的发明思路是针对现有基于高阶累积量的阵列信号处理方法所存在的计
算复杂度过高的问题,利用线性时间的奇异值分解方法进行信号子空间的近似,从而大幅
缩短算法的执行时间并大幅节约算法的占用内存。

本发明基于高阶累计量的波达快速估计方法的流程如图1所示,包括以下步骤:

步骤A、对所述观测数据做傅里叶变换后进行空域-频域?#20132;?#22788;理,并构造出空域-
频域?#20132;?#22788;理后信号的四阶累积量矩阵

首先建立信号模型:

考虑P个线路径被由M个传感器组成的均匀垂直阵列接收。则第m个传感器接收到
的信号在时域内可以如下建模:


其中e(t)是发射信号,ap表?#38236;趐个线路径的幅值,τm,p是第p个线路径的 传播时
延,nm(t)是第m个传感器接收到的?#26377;?#22122;声。另外,第p个线路径的传播时?#24212;觤,p可以表示
为:

τm,p=Tp+tm(θp) (2)

其中Tp代表第p个线路径到达参考传感器的传播时间,tm(θp)代表参考传感器与第
m个传感器之间的时延。tm(θp)是第p个线路径到达接收阵列的角度θp的函数。

在频域内,(1)式可以表示为:


将(2)式与(3)式结合可得到:


其中:

Ψp=2πTp Φp=2πtm(θp)

在(3)式中,e(v)项是确定的发射信号在频率v上的幅值;ap项是每个线路径的幅
值,可以看做随机的,不相干的。

假定信号被分为F个?#26723;悖?#22240;此(3)是可以被写成矩阵?#38382;劍?br />

xg=H.A+ng (5)

其中:

·xg=[x+(v1),x+(v2),...,x+(vF)]+是一个(M×F)维的长向量,包含所有传感器的
所有?#26723;?#20449;息,其中x(vi)=[x1(vi),x2(vi),...,xM(vi)]+

·ng=[n+(v1),n+(v2),...,n+(vF)]+是一个(M×F)维的长向量,是每个?#26723;?#19978;接收
到的噪声向量的串联,其中n(vi)=[n1(vi),n2(vi),...,nM(vi)]+

·H=[h1,h2,...,hP]+是一个(M×F,P)维矩阵,将表征发射端与接收端之间传播
函数的项整合到一起,其中e(vi)表
示发射信号

·A=[a1,a2,...,aP]+是一个P维向量

·上标+表示转置

因?#31169;?#25910;数据的四阶累积量矩阵可以表示为:


·表示克罗内克积

·上标*表示?#26597;?br />

·H表示?#26597;?#36716;置

鉴于到达接收阵列的线路径是发射信号不同时延或振幅增益的副本,它们是高度
相关甚?#26009;?#24178;的。因此矩阵C的秩亏损。通过空间-频域?#20132;?#39044;处理将矩阵C的?#28982;?#22797;为P2。
所以估计的?#20132;?#21518;的四阶累积量矩阵为:


则此?#26412;?#38453;的秩最大可为K=(2ks+1)(2kf+1),ks、kf分别为空间?#20132;?#19982;频域?#20132;?br />的阶。因?#23435;?#20102;分离P个相干的线路径,需保证K≥P2。

步骤B、根据所述四阶累积量矩阵构建观测数据的信号子空间;

接下来需要对四阶累积量矩阵进行特征分解,进而构造出信号子空间与噪声子空
间。由于现有基于高阶统计量的信号分离方法中的特征分解步骤需要耗费大量的计算资
源,因此,本发明采用随机SVD方法,使分解过程所消耗的时间与占用的内存空间极大地减
少;具体地,

首先对矩阵的列向量以一定的概率分布进行随机抽取,即产生0~1的随机数,若
该随机数小于前i列概率之和且大于前i+1列概率之和,则第i列被抽中,按此方法进行c次,
抽取出c个列向量。概率为即第a列被选中的概率为:Q[it=a]=qa,a
=1,…,n。

为了使估计更准确,将抽选出的列向量进行放缩并构成矩阵缩放因子为:

对矩阵进行SVD操作,令

通过矩阵较大的P2个特征值对应的特征向量,利用计算得到矩阵
较大的P2个特征值对应的特征向量,组成矩阵即则矩阵的列空间
近似为信号子空间。

对于抽样个数c,可取c≥4η2/∈2或c≥4P2η2/ε2。其中若使抽样个数满足c≥4η2/
∈2,则利用衡量近似信号子空间与信号子空间之间的误差时,该误差D2
满足的概率为1-?#27169;?#33509;使抽样个数满足c≥4P2η2/ε2,则利用
衡量近似信号子空间与信号子空间之间的误差,该误差DF满足
的概率为1-δ。||||F表示Frobenius-范数,表示矩阵的最优P2阶
近似矩阵,是一个与?#21335;?#20851;的量,表示矩阵的第i列。

步骤C、根据观测数据的信号子空间,估计出信号源的波达方向及波达时间:

利用阵列流型张成空间与信号子空间的重合性,构造估计函数:





θ表示信号路径的波达角度;T表示信号路径的波达时间;e(vi)表示信号在频率vi
处的幅值,i=1,2,..,F;τ1,j(θ)表示信号路径到达第j个传感器相对于到达作为参考传感
器的时间延迟,j=2,3,…,M-1。

估计函数的最大值所对应的θ和T即信号源的波达方向和波达时间。

为了验证本发明的效果,将其应用于仿真实验数据中,并与传统基于高阶累积量
的信号分离算法的运行结果与运行时情况进行比较。实验使用的射线路径的 相关信息为:
四条射线路?#23545;?#21508;个传感器间的延迟时间分别为:0s,2×10-3s,-1×10-3s,1×10-3s;四条
射线路径到达传感器的时间分别为5×10-3s,15×10-3s,15×10-3s,20×10-3s;接收端是由
六个传感器组成的均匀阵列,选取第一个传感器为参考传感器,传感器采样数据长度为
128;两种方法所采用的空域和频域的?#20132;?#38454;次均为1;添加高斯彩色噪声,信噪比为20dB;
失败概率为0.01,期望误差系数ε=2。

算法运行在Intel(R)Core(TM)[email protected]计算机上,操作?#20302;?#20026;
Windows 7Ultimate 64-bit。

实验中,四阶累积量矩阵是一个规模为14400×14400的方阵,占用了3.16Gb

表1为该实验中分别将使用经典的四阶累积量信号分离方法与使用本发明方法获
得信号子空间过程的时间与空间消耗,定义M为LTSVD方法与传统方法时间或所占空间的比
值。

表1



根据以上实验结果可知,与直接将四阶累积量矩阵进行特征分解相比,本发明方
法在时间和空间方面均有显著地性能提升:将原方法的执行时间缩短至近千?#31181;?#19968;,申请
的内存空间也缩小至不到百?#31181;?#19968;。

图2a~图2c为本发明方法与方法结果的对比?#21644;?a、图2b、图2c依次为现有方法、
F-范数约束的本发明方法和2-范数约束的本发明方法的信号分离结果。可见,本发明方法
没有影响原方法的准确度。

本发明方法可广泛用于雷达、声纳、地震监测等领域,以下为两个具体应用方案:

一种基于声线传播时间层析的海洋声层析方法,利用声音在海洋中传播速度的变
化来反演海洋环境?#38382;?#39318;先利用以上技术方案所述方法对从声传感器阵列所接收到的多
路径传播声信号进行波达估计,从而分离出每一条声线路径;然后根据声线路径的到达时
间反演出海洋环境?#38382;?br />

一种定位方法,首先利用以上技术方案所述方法进行波达方向估计,然后利用估
计出的波达方向确定信号源的位置。

关于本文
本文标题:一种基于高阶累计量的波达快速估计方法.pdf
链接地址:http://www.pqiex.tw/p-5994668.html
关于我们 - 网站声明 - 网?#38236;?#22270; - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 炒股开户 富途证券 开元棋牌app下载 福彩3d和值走势图连线图专业版 百蠃棋牌官方下载 山东群英会遗漏软件 4码买组三 云南十一选五规则 股票怎么开户 吉林11选5开奖视频 福彩3d和值走势图综合版