平码五不中公式规律
  • / 9
  • 下载费用:30 金币  

基于机器视觉的复杂背景下玉米粒检测识别装置及方法.pdf

关 键 ?#21097;?/dt>
基于 机器 视觉 复杂 背景 玉米 检测 识别 装置 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201610890356.6

申请日:

2016.10.12

公开号:

CN106483135A

公开日:

2017.03.08

当前法律状态:

实审

有效性:

审中

法?#19978;?#24773;: 实质审查的生效IPC(主分类):G01N 21/88申请日:20161012|||公开
IPC分类号: G01N21/88 主分类号: G01N21/88
申请人: 河北农业大学
发明人: 李东明; 刘永福; 张莉; 曾立华; 刘雅举; 邵利敏; 王娟; 程雪; 李娜
地址: 071001 河北省保定市莲池区灵雨寺街289号河北农业大学
优?#28909;ǎ?/td>
专利代理机构: ?#26412;?#31185;亿知识产权代理事务所(普通合伙) 11350 代理人: 汤东凤
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201610890356.6

授权公告号:

|||

法律状态公告日:

2017.04.05|||2017.03.08

法律状态类型:

实质审查的生效|||公开

摘要

本发明公开了一种基于机器视觉的复杂背景下玉米粒检测识别装置及方法,涉及图像的采集和处理装置技术领域。所述方法包括如下步骤:构建玉米粒检测识别装置,使玉米粒能够快速,且尽量平铺展示在所述装置上;通过图像采集装置采集复杂背景下的玉米粒图像信息,并使用图像处理装置分析出复杂环境下玉米粒的几何特征和颜色特征参数,并从玉米粒的几何特征和颜色特征参数中得出有效的分类特征;建立识别网络,选择玉米粒中有效的分类特征作为输入参数,通过识别网络识别出玉米粒。所述方法能够对复杂背景下的玉米粒进行识别,且识别准确。

权利要求书

1.一种基于机器视觉的复杂背景下玉米粒检测识别装置,其特征在于包括:图像处理
装置(1)和图像采集装置(2),所述图像采集装置(2)用于采集复杂背景下玉米粒的图像信
息,所述图像处理装置(1)用于根据采集的玉米粒的图像信息分析出玉米粒的几何特征和
颜色特征参数,并根据玉米粒的几何特征和颜色特征参数?#26434;?#31859;粒进行识别。
2.如权利要求1所述的基于机器视觉的复杂背景下玉米粒检测识别装置,其特征在于:
所述装置还包括载物平台(3),用于装载待识别的玉米粒(4)。
3.如权利要求1所述的基于机器视觉的复杂背景下玉米粒检测识别装置,其特征在于:
所述装置还包括平行光源(5),所述平行光源(5)用于为所述图像采集装置提供视场用平行
光。
4.如权利要求2所述的基于机器视觉的复杂背景下玉米粒检测识别装置,其特征在于:
所述装置还包括支架(6),所述载物平台(3)位于所述支架(6)内,所述图像采集装置(2)位
于所述载物平台(3)上侧的支架(6)上。
5.如权利要求1所述的基于机器视觉的复杂背景下玉米粒检测识别装置,其特征在于:
所述图像采集装置(2)为照相机。
6.如权利要求1所述的基于机器视觉的复杂背景下玉米粒检测识别装置,其特征在于:
所述图像处理装置(1)包括主机(11)和显示器(12),所述主机(11)用于根据采集的玉米粒
的图像信息分析出玉米粒的几何特征和颜色特征参数,并根据玉米粒的几何特征和颜色特
征参数?#26434;?#31859;粒进行识别,所述显示器用于显示处理的数据和识别的结果。
7.一种基于机器视觉的复杂背景下玉米粒检测识别方法,其特征在于包括如下步骤:
1)构建玉米粒检测识别装置,使玉米粒能够快速,且尽量平铺展示在所述装置上;
2)通过图像采集装置采集复杂背景下的玉米粒图像信息,并使用图像处理装置分析出
复杂环境下玉米粒的几何特征和颜色特征参数,并从玉米粒的几何特征和颜色特征参数中
得出有效的分类特征;
3)建立识别网络,选择玉米粒中有效的分类特征作为输入参数,通过识别网络识别出
玉米粒。
8.如权利要求7所述的基于机器视觉的复杂背景下玉米粒检测识别方法,其特征在于:
所述的步骤2)中,玉米粒的几何特征参数包括玉米粒的面积、周长、尖端、形心、长短
轴、最大内?#24615;病?#26368;小外接圆和最小外接矩形。
9.如权利要求7所述的基于机器视觉的复杂背景下玉米粒检测识别方法,其特征在于:
所述的步骤2)中,玉米粒的颜色特征包括RGB、HSI不同颜色空间下的特征。
10.如权利要求7所述的基于机器视觉的复杂背景下玉米粒检测识别方法,其特征在
于:所述的步骤3)中所建立的识别网络为工神经网络或支持向量机。

说明书

基于机器视觉的复杂背景下玉米粒检测识别装置及方法

技术领域

本发明涉及图像的采集和处理装置技术领域,尤其涉及一种基于机器视觉的复杂
背景下玉米粒检测识别装置和方法。

背景技术

针?#38405;?#21069;逐步推广的大型直收型玉米收割机缺点和实际需要,应用机器视觉技术
?#26434;?#31859;籽粒或质量进行细致的检验、分析、鉴定,以判断其优劣,能够收到快速、准确、无损
等人工无法比拟的效果,使直收型玉米收割机的功能得到进一步完善,因?#31169;?#24555;速、高效的
机器视觉技术应用于玉米籽粒检测已经成为发展趋势。

同时随着我国农业自动化?#22270;?#32422;化的发展,要求?#26434;?#31859;?#20998;式?#34892;大批量实?#22791;?#25928;
检测。本课题针对我国农产品?#20998;?#26816;测领域中急需解决的问题,基于图像技术及相关知识,
根据玉米籽粒形态进行玉米?#20998;?#26816;测研究,提高玉米籽粒识别精度和工作效?#21097;?#23454;?#21046;分?br />检测自动化,具有非常重要的意义。

国内对于图像处理技术在农产品检测方面的应用研?#31185;?#27493;较晚,主要开始于九十
年代初,与国外研究还有一定差距,他们中比较有代表性的有:

1995年,周一鸣、王丰元等研究了检测种子几何特征参数的平滑处理、灰度统计和
二值化处理基本算法,开发了一套对种子进行基本形状参数测量的计算机图像处理系?#24120;?br />并?#26434;?#31859;种子进行了实测验证。

1999年,张书慧等人建立了图像数据采集系?#24120;?#23454;现了对苹果、?#19994;?#20892;产品的?#20998;?br />检测,能有效的检测出富?#31185;?#26524;中优等品种。

2000年,?#23435;?#24314;立了一?#36164;视?#20110;番茄?#20998;首?#21160;检测和分级的硬件系?#24120;?#37319;用圆度、
果径、比?#26723;?#29305;征来描述番茄的形状,并利用神经网络对遗传算法优化后的参数进行分类
判别,其识别精度可达90.5%。

2004年,闸建文等根据玉米品种的外部特征提取出11个特征参数,利用数理统计
和模糊数学知识进行识别研究。建立了?#20174;?#29577;米品种间特征参数相似程度的特征贴近度、
品种贴近度计算公式和品种判别准则,品种正确识别率达88%。

2010年,王玉亮、刘贤喜等提出一种基于多对象有效特征提取和主成分分析优化
神经网络的玉米种子品种识别方法,提取了玉米种子的几何特征和颜色特征参数,优化了
基于机器视觉的玉米种子图像处理策略和品种识别算法,提高了玉米品种识别的速度和准
确?#21097;?#32508;合识别率达到96%以上。

2012年,孙?#27704;?#31561;人利用动态机器视觉系?#24120;?#38024;对4种杂交玉米种子获取图像,提
取了8个形态特征参数和6个颜色特征参数;针?#26434;?#31859;品种识别特点,优化了特征参数组合
和网络参数,设计了由4个子网络组成的遗传算法优化的径向基函数组合网络,该方法识别
率可达95%。

2012年,闰小梅等研究了不同品种玉米种子的冠部核心区域颜色特征、侧面有色
区域的颜色特征及两者综合的颜色特征,结果发现,两者综合的颜色特征?#28304;?#24230;识别的作
?#31859;?#22823;;颜色特征向量H,S,V,R,G,B经fisher判别分析法进行降维优化,在得到的一维特征
分析函数的基础上再进行曲线拟合,以点到曲线的距离进行纯度识别。用9个品种玉米种子
作为试验材料,进行基于侧面与冠部的颜色特征的纯度识别验证,结果表明,最低识别率在
93.4%,平均识别率96.87%。

2014年,曹维时分别提取玉米种子冠部核心区域的RGB颜色模型特征参数,然后对
三个色彩分量分别进行二层二维离散小波变换,将玉米种子冠部图像R,G,B三维向量?#38468;?br />差异分解成为18维特征向量,放大了样本之间的色彩特征?#38468;?#24046;异。使得从玉米种子冠部
图像小波分析数据中提取的人工神经网络训?#36153;?#26412;能够更好地?#20174;?#26679;本特征,从而保障玉
米种子纯度识别的准确性,平均识别率在96%。

目前,能够直接脱粒的大型玉米联合收割机正逐步推广,如约翰迪尔3518、福田雷
沃籽粒直收型玉米收割机。但是由于机械技术限制,收货籽粒中含有较多杂?#21097;?#22914;秸?#36873;?#29577;
米?#23613;?#26434;叶、碎石或破损粒等,直接影响玉米籽粒的?#20998;省?#21516;时玉米在收获过程中,亦受到人
为和自然等复杂因素的影响,籽粒?#20998;?#24046;异很大,如形状、大小、色泽等都是变化的,很?#39068;?br />齐划一,故在玉米籽粒?#20998;?#26816;测与分析?#24065;?#26377;足够的应变能力?#35789;视?#24773;况的变化。

利用机器视觉与图像处理技术,将玉米籽粒在复杂背景下快速、高效的检测出来,
解决目前大型直收型玉米收割机“最后一公里”的问题,是本研究的核心内容。

以往相关研究中,大部分都是?#26434;?#31859;种子进行分类识别;或者籽粒在特定场景下
进行识别,比如特定的摆放位置或籽粒之间直接不能粘连。本研究以实际中的复杂场景为
研究对象,拟解决玉米籽粒的识别及?#20998;?#37492;定,同时考虑实?#35270;?#29992;中对速度的要求,因此提
高算法的处理速度的也?#19988;?#35299;决的重要问题。

发明内容

本发明所要解决的技术问题是提供一种基于机器视觉的复杂背景下玉米粒检测
识别装置和方法,所述方法能够对复杂背景下的玉米粒进行识别,且识别准确。

为解决上述技术问题,本发明所采取的技术方案是:一种基于机器视觉的复杂背
景下玉米粒检测识别装置,其特征在于包括:图像处理装置和图像采集装置,所述图像采集
装置用于采集复杂背景下玉米粒的图像信息,所述图像处理装置用于根据采集的玉米粒的
图像信息分析出玉米粒的几何特征和颜色特征参数,并根据玉米粒的几何特征和颜色特征
参数?#26434;?#31859;粒进行识别。

进一步的技术方案在于:所述装置还包括载物平台,用于装载待识别的玉米粒。

进一步的技术方案在于:所述装置还包括平行光源,所述平行光源用于为所述图
像采集装置提供视场用平行光。

进一步的技术方案在于:所述装置还包括支架,所述载物平台位于所述支架内,所
述图像采集装置位于所述载物平台上侧的支架上。

进一步的技术方案在于:所述图像采集装置为照相机。

进一步的技术方案在于:所述图像处理装置包括主机和显示器,所述主机用于根
据采集的玉米粒的图像信息分析出玉米粒的几何特征和颜色特征参数,并根据玉米粒的几
何特征和颜色特征参数?#26434;?#31859;粒进行识别,所述显示器用于显示处理的数据和识别的结
果。

本发明还公开了一种基于机器视觉的复杂背景下玉米粒检测识别方法,其特征在
于包括如下步骤:

1)构建玉米粒检测识别装置,使玉米粒能够快速,且尽量平铺展示在所述装置上;

2)通过图像采集装置采集复杂背景下的玉米粒图像信息,并使用图像处理装置分
析出复杂环境下玉米粒的几何特征和颜色特征参数,并从玉米粒的几何特征和颜色特征参
数中得出有效的分类特征;

3)建立识别网络,选择玉米粒中有效的分类特征作为输入参数,通过识别网络识
别出玉米粒。

进一步的技术方案在于:所述的步骤2)中,玉米粒的几何特征参数包括玉米粒的
面积、周长、尖端、形心、长短轴、最大内?#24615;病?#26368;小外接圆和最小外接矩形。

进一步的技术方案在于:所述的步骤2)中,玉米粒的颜色特征包括RGB、HSI不同颜
色空间下的特征。

进一步的技术方案在于:所述的步骤3)中所建立的识别网络为工神经网络或支持
向量机。

采用上述技术方案所产生的有益效果在于:所述方法通过?#26434;?#31859;粒进行了图像采
集,并对预处理算法、特征提取算法、?#20998;?#35782;别算法等进行了算法试验和优化改进。对于方
法中的每种算法,对比根据国?#20918;?#20934;规定的人工目测方法以及MATLAB图像处理工具箱中相
应算法的试验结果,考察各种算法的执行效率和准确性。在算法选择过程中,对于同功能的
不同算法通过试验分析,根据其性能和优缺点来进行选择。综合分析方法中提取?#20998;视?#33391;
玉米籽粒和杂质之间的几何特征和颜色特征数据,应用所提取特征参数?#26434;?#31859;?#20998;式?#34892;检
测等方面试验,从而改进硬件采集系统中的相关参数以及软件系统中的相关算法,保证软
件系统在玉米籽粒?#20998;?#26816;测方面的有效性、准确性和执行效?#30465;?br />

附图说明

下面结合附图和具体实施方式对本发明作进一步详细的说明。

图1是本发明实施例所述装置的结构示意图;

图2是本发明实施例所述方法的第一种流程图;

图3是本发明实施例所述方法的第二种流程图;

图4是本发明实施例所述方法中玉米籽粒的几何特征参数示意图;

其中:1、图像处理装置11、主机12、显示器2、图像采集装置3、载物平台4、玉米粒5、平行
光源6、支架a、面积b、周长c、尖端d、形心e、长轴f、最大内?#24615;瞘、最小外接圆h最小外接矩形
i短轴。




具体实施方式

下面结合本发明实施例中的附图,对本发明实施例中的技术方?#38468;?#34892;清楚、完整
地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他
实施例,?#38469;?#20110;本发明保护的范围。

在下面的描述中阐述了很多具体?#38468;?#20197;便于充分理解本发明,但是本发明还可以
采用其他不同于在此描述的其它方式?#35789;?#26045;,本领域技术人员可以在不违背本发明内涵的
情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。

如图1所示,本发明实施例公开了一种基于机器视觉的复杂背景下玉米粒检测识
别装置,图像处理装置1和图像采集装置2,优选的,所述图像采集装置2为照相机。所述图像
采集装置2用于采集复杂背景下玉米粒的图像信息;所述图像处理装置1用于根据采集的玉
米粒的图像信息分析出玉米粒的几何特征和颜色特征参数,并根据玉米粒的几何特征和颜
色特征参数?#26434;?#31859;粒进行识别。

进一步的,如图1所示,所述装置还包括载物平台3、平行光源5和支架6,所述载物
平台3用于装载待识别的玉米粒4。所述平行光源5用于为所述图像采集装置提供视场用平
行光。所述载物平台3位于所述支架6内,所述图像采集装置2位于所述载物平台3上侧的支
架6上。

进一步的,在本发明的一个实施例中,如图1所示,所述图像处理装置1包括主机11
和显示器12,所述主机11用于根据采集的玉米粒的图像信息分析出玉米粒的几何特征和颜
色特征参数,并根据玉米粒的几何特征和颜色特征参数?#26434;?#31859;粒进行识别,所述显示器用
于显示处理的数据和识别的结果。

如图2所示,本发明实施例公开了一种基于机器视觉的复杂背景下玉米粒检测识
别方法,包括如下步骤:

S101:构建玉米粒检测识别装置,使玉米粒能够快速,且尽量平铺展示在所述装置
上;

S102?#21644;?#36807;图像采集装置采集复杂背景下的玉米粒图像信息,并使用图像处理装
置分析出复杂环境下玉米粒的几何特征和颜色特征参数,并从玉米粒的几何特征和颜色特
征参数中得出有效的分类特征;

S103:建立识别网络,选择玉米粒中有效的分类特征作为输入参数,通过识别网络
识别出玉米粒。

如图3所示,本发明实施例公开了一种基于机器视觉的复杂背景下玉米粒检测识
别方法,包括如下步骤:

S201:建立合适的载物平台,使玉米籽粒能够快速,且尽量平铺(如图1所示),?#26723;?br />检测难度。在含有杂质的复杂背景下,从多籽粒图像上获取单籽粒检测区域,确定本研究的
分割算法。并在此基础上?#36816;?#27861;做进一步改进,以提高分割效?#21097;?#21516;时最大限度的保持单籽
粒外形特征。

S202:定义复杂环境下玉米籽粒的几何特征和颜色特征参数。几何特征参数主要
包括面积a、周长b、尖端c、形心d、长轴e、最大内?#24615;瞗、最小外接圆g、最小外接矩形h和短轴
i等(如图4所示);颜色特征包括RGB、HSI等不同颜色空间下的特征。同对特征数据进行处理
来选择有效的分类特征。比较玉米籽粒与杂?#26159;?#21035;,?#19994;?#21512;适的分类特征,同时考虑光线等
因素对参数造成的影响。

S203:拟采用人工神经网络或支持向量机等方法分别建立识别网络,选择玉米籽
粒中有效的分类特征作为输入参数,并通过实验比较不同算法对霉变,破损,杂?#23454;热?#38519;粒
的识别精度。

所述方法通过?#26434;?#31859;粒进行了图像采集,并对预处理算法、特征提取算法、?#20998;?#35782;
别算法等进行了算法试验和优化改进。对于方法中的每种算法,对比根据国?#20918;?#20934;规定的
人工目测方法以及MATLAB图像处理工具箱中相应算法的试验结果,考察各种算法的执行效
率和准确性。在算法选择过程中,对于同功能的不同算法通过试验分析,根据其性能和优缺
点来进行选择。综合分析方法中提取?#20998;视?#33391;玉米籽粒和杂质之间的几何特征和颜色特征
数据,应用所提取特征参数?#26434;?#31859;?#20998;式?#34892;检测等方面试验,从而改进硬件采集系统中的
相关参数以及软件系统中的相关算法,保证软件系统在玉米籽粒?#20998;?#26816;测方面的有效性、
准确性和执行效?#30465;?br />

关于本文
本文标题:基于机器视觉的复杂背景下玉米粒检测识别装置及方法.pdf
链接地址:http://www.pqiex.tw/p-5994768.html
关于我们 - 网站声明 - 网?#38236;?#22270; - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网?#26223;?#26435;所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 1元入场棋牌捕鱼app 天天电玩城捕鱼技巧 龙虎输五赢六什么意思 贵州快三跨度和值走势 财神捕鱼充多少钱打 爱彩人ios 教你一招黑红梅方王漏洞 彩九app下载 内蒙古快3遗漏号定牛 时时彩定位一码计算法