平码五不中公式规律
  • / 11
  • 下载费用:30 金币  

一种稀疏双平行线阵及二维波达方向估计方法.pdf

关 键 ?#21097;?/dt>
一种 稀疏 平行线 二维 方向 估计 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201610819963.3

申请日:

2016.09.13

公开号:

CN106483493A

公开日:

2017.03.08

当前法律状态:

授权

?#34892;?#24615;:

有权

法?#19978;?#24773;: 授权|||著录事项变更 IPC(主分类):G01S 3/14变更事项:发明人变更前:杨雨轩 郑植 孟会鹏 葛琰 刘柯宏变更后:郑植 杨雨轩 孟会鹏 葛琰 刘柯宏|||实质审查的生效IPC(主分类):G01S 3/14申请日:20160913|||公开
IPC分类号: G01S3/14 主分类号: G01S3/14
申请人: 电子科?#21363;?#23398;
发明人: 杨雨轩; 郑植; 孟会鹏; 葛琰; 刘柯宏
地址: 611731 四川省成都市高新区(西区)西源大道2006号
优?#28909;ǎ?/td>
专利代理机构: 电子科?#21363;?#23398;专利?#34892;?51203 代理人: 周刘英
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201610819963.3

授权公告号:

|||||||||

法律状态公告日:

2018.12.18|||2017.08.08|||2017.04.05|||2017.03.08

法律状态类型:

授权|||著录事项变更|||实质审查的生效|||公开

摘要

本发明公开了一种稀疏双平行线阵及二维波达方向估计方法。本发明的线阵包括两个SULA,且阵元数相差1,阵元数多的子阵还包括一个距原点的间距小于或等于0.5λ的辅助阵元,SULA阵元间距为λ,且子阵间的间距为0.5λ。对应的DOA估计方法为:基于接收数据的自相关矩阵得到线性变换矩阵,再基于维度与信号个数相同的单位阵构造传播矩阵Pc;通过对Pc进行上下划分和相应的矩阵变换,求得包含入射信号与y轴的夹角的余弦值;基于两个SULA所对应的总的阵列流型矩阵,求得入射信号与x轴的夹角的两组余弦值;求结合基于辅助阵元的接收数据进行去模糊;利用入射信号与x轴和y轴的夹角的余弦值求俯仰角和方位角的估计值。本发明用于无线通信,其结构简单,低成本,高测向精度。

权利要求书

1.一种稀疏双平行线阵,包括相互平行的第一子阵和第二子阵,两个子阵的间距为0.5
λ,两个子阵的一个端点阵元位置对齐,将对齐的第一子阵的端点阵元定义为原点,其特征
在于,第一子阵包括M+1个以阵元间距λ均匀线性分布的阵元;第一子阵还包括一个距原点
的间距小于或等于0.5λ的辅助阵元;第二子阵包括M个以阵元间距λ均匀线性分布的阵元,
其中λ表示载波波长。
2.一种用于权利要求1所述的稀疏双平行线阵的二维波达方向估计方法,其特征在于,
包括下列步骤:
步骤1:稀疏双平行线阵接收K个不相关信源的入射信号,得到两个子阵中各阵元的接
收数据,其中K小于或等于M;
步骤2:获取传播矩阵Pc:
步骤201:将第一子阵中除辅助阵元外的所有阵元的接收数据记为x1(t),将第二子阵的
所有阵元的接收数据记为x2(t),堆叠x1(t)和x2(t)得到接收数据z(t);
计算接收数据z(t)在N次采样下的互相关矩阵并将的前K列记为后2M+1-K列
记为其中N为预设采样次数;
步骤202:根据得到矩阵其中符号(·)+表示M-P广义逆;
步骤203:堆叠矩阵和K×K维的单位矩阵I,得到(2M+1)×K维传播矩阵Pc;
步骤3:用αk、βk表示K个入射信号的入射方向在水平方向、竖直方向的夹角,分别获取
cosβk、cosαk的估计值其中k=1,2…,K:
301:将传播矩阵Pc的前M行记为P1,最后M行记为P3,得到矩阵
对矩阵F1进行特征分解,得到K个特征值λ1,…,λK和K个特征向量,将特征向量按?#20449;?#25918;
构成矩阵
基于矩阵F1的K个特征值得到
302:基于矩阵得到阵列流型矩阵的估计值
将的前M行记为的第M+2至2M行记为根据得到矩阵B1,其中
符号(·)H表示矩阵的?#26597;?#36716;置
将的第2至M+1行记为的第M+3至2M+1行记为根据得到矩
阵B2;
根据得到矩阵
步骤303:获取cosαk的两个备选估计值:
根据公式计算第第一备选估计值cosαk′;
根据公式计算空间相位差若则第第二备选估计值
否则
步骤304:对cosαk的两个备选估计?#31561;?#27169;糊,得到
将第一子阵的所有阵元的接收数据记为x(t),并计算x(t)在N次采样下的自相关矩阵

对进行特征值分解,得到M+2个特征值,将前M+2-K个最小特征值对应的特征向量记
为噪声子空间Un;
分别将K个αk′、αk″代入第一子阵的阵列流型矩阵中,得到和
其中a(αk′)和a(αk″)表?#38236;?#21521;矢量;
若则否则
步骤4:根据计算K个入射信号的俯仰角和方位角估计值俯仰角估计
值方位角估计值其中

说明书

一种稀疏双平行线阵及二维波达方向估计方法

技术领域

本发明属于无线移动通信技术领域,特别是涉及一种基于稀疏均匀线阵的平行线
性阵列及其二维波达方向(DOA)估计方法。

背景技术

随着空分多址技术和智能天线技术的发展,利用信号的波达方向(DOA)完成信号
的空域捕获和跟踪吸引了大量国内外学者的研究。近二十年来,基于无源阵列接收信号的
二维(2D)波达方向(DOA)估计问题越来越得到广泛的关注,尤其是其在军事雷达、声呐、导
航、通信等领域的应用。

现有的二维波达方向估计方法大多是基于由阵元间距等于半倍波长的简化面阵
构成的,包括L形阵?#23567;?#21313;?#20013;?#38453;列和双平行线阵等。其中,双平行线阵由于结构简单、?#23376;?br />实现、具有较强的方法适用性等优点得到了广泛的关注和应用。近几十年来,人?#19988;?#32463;做了
很多的利用双平行线阵估计2-D DOA的研究并提出了大量的算法,比较常见的主要有以下
三种方案:

(1)利用两个阵元间距为半倍波长的均匀线阵(ULA)构造的双平行线阵,其中,第
一子阵比第二子阵多一个阵元。信号的俯仰角和方位角是基于传播算子法求得的,但是由
于所采用的是常规的ULA,其测向精度并不是很好,此外,该方案估计边?#21040;?#24230;时性能很差,
具体参考文献1:J.Li,X.Zhang,H.Chen,Improved two dimensional DOA estimation
algorithm for two parallel uniform linear arrays using propagator method,
Signal Process.vol.92,no.12,pp.3032–3038,2012.;

(2)利用两个阵元数相等的双平行线阵和一系列的线性变换操作,将复数域求解
问题转换到实数域求解,一定程度上?#26723;?#20102;计算复杂度,但是估计精度的提高也是有限的,
具体参考文献2:YANG Tao,YU Xiaohong,GAN Lu.New 2-D Unitary ESPRIT algorithm
for DOA estimation.Computer Engineering and Applications,2012,48(15):123-128;

(3)利用两个阵元数相同的线性子阵,将二维谱峰搜索问题简化为两个一维的处
理问题,虽然其计算复杂度比传统的二维谱峰搜索低一些,但是?#21248;?#26377;一次谱峰搜索,因此
计算量比方案(1)高,此外,该方案的估计精度有限,具体参考文献3:ieqi Xia,Yi Zheng,
Qun Wan,and Xuegang Wang,“Decoupled Estimation of 2-D Angles of Arrival Using
Two Parallel Uniform Linear Arrays.”IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION,VOL.55,NO.9,SEPTEMBER 2007。

发明内容

本发明的发明目的在于:针对现有的双平行线阵在估计算法复杂度,估计精度和
?#20302;?#25104; 本方面的矛盾,提出一种结构简单的基于稀疏线阵的稀疏双平行线阵及其相应的
二维波达角(DOA)估计算法,以达到?#26723;?#35745;算复杂度、?#20302;?#25104;本、简化处理程序、?#34892;?#25552;高估
计精度。

本发明的稀疏双平行线阵,包括相互平行的第一子阵和第二子阵,两个子阵的间
距为0.5λ,两个子阵的一个端点阵元位置对齐,将对齐的第一子阵的端点阵元定义为原点,
第一子阵包括M+1个以阵元间距λ均匀线性分布的阵元,以及一个距原点的间距小于或等于
0.5λ的辅助阵元(优选0.5λ),即第一子阵的阵元总数为M+2;第二子阵包括M个以阵元间距λ
均匀线性分布的阵元,其中λ表示载波波长。

同时,本发明还公开了一种用于本发明的稀疏双平行线阵的二维波达方向估计方
法,包括下列步骤:

步骤1:稀疏双平行线阵接收K个不相关信源的入射信号,得到两个子阵中各阵元
的接收数据,其中K小于或等于M;

步骤2:获取传播矩阵Pc:

步骤201:将第一子阵中除辅助阵元外的所有阵元的接收数据记为x1(t),将第二
子阵的所有阵元的接收数据记为x2(t),堆叠x1(t)和x2(t)得到接收数据z(t),即

计算接收数据z(t)在N次采样下的互相关矩阵并将的前K列记为后2M+
1-K列记为其中N为预设采样次数;

步骤202:根据得到矩阵其中符号(·)+表示M-P广义逆;

步骤203:堆叠矩阵和K×K维的单位矩阵I,得到(2M+1)×K维传播矩阵Pc;

步骤3:用α、β表示入射信号的入射方向在水平方向、竖直方向的夹角,通过下标k
(k=1,2…,K)区分不同的入射信号,即αk、βk,分别获取cosβk、cosαk的估计值

301:将传播矩阵Pc的前M行记为P1,最后M行记为P3,然后利用P1和P3之间的线性关
系求得包含β全部信息的矩阵

对矩阵F1进行特征分解,得到K个特征值λ1,…,λK和K个特征向量,将特征向量按列
排放构成矩阵用于的计算;

基于矩阵F1的K个特征值得到其中子阵间距d=0.5λ,

302:基于矩阵得到阵列流型矩阵的估计值

将的前M行记为的第M+2至2M行记为根据得到矩阵B1,
其中符号(·)H表示矩阵的?#26597;?#36716;置

将的第2至M+1行记为的第M+3至2M+1行记为根据得
到矩阵B2;

根据得到矩阵而的对角线元素与F1的特征值是一一对应,即:由
的第k个对角线元素求得的和F1的第k个特征值求得的是自动配对的。

步骤303:获取cosαk的两个备选估计值:

根据公式计算第第一备选估计值cosα′k,其中
阵元间距d1=λ,即

根据公式计算空间相位差若则第第二备选估计值
否则其中阵元间距d1=λ;

步骤304:对cosαk的两个备选估计?#31561;?#27169;糊,得到

将第一子阵的所有阵元的接收数据记为x(t),并计算x(t)在N次采样下的自相关
矩阵

对进行特征值分解,得到M+2个特征值,将前M+2-K个最小特征值对应的特征向
量记为噪声子空间Un;

分别将K个α′k、α″k代入第一子阵的阵列流型矩阵中,得到和
其中a(αk′)和a(α″k)表?#38236;?#21521;矢量;

若则否则

步骤4:根据计算K个入射信号的俯仰角和方位角估计值

俯仰角估计值方位角估计值其中

综上所述,由于采用了上述技术方案,本发明的有益效果是:阵列结构简单,?#23376;?br />实?#37073;?#21487;以实?#20540;?#25104;本,低运算量,高测向精度的二维DOA估计,该方法可以应用于雷达,声
呐及无线通信等领域,解决现有常规阵列所不能解决的问题。

附图说明

图1是本发明提出的基于SULA和SLA构造的稀疏L阵的阵列结构;

图2是本发明所提稀疏双平行线阵及算法与现有算法的俯仰角和方位角的估计值
的均方根误差随信噪比变化的轨迹图;

图3是本发明所提稀疏双平行线阵及算法与现有算法的俯仰角和方位角的估计值
的均方根误差随采样快拍数变化的轨迹图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发
明作进一步地详?#35813;?#36848;。

实施例

参见图1,本发明的稀疏双平行线阵包括子阵间距为d的子阵1和子阵2,其中子阵1
位于x轴包含M1=M+2个阵元,其中稀疏均匀线阵(SULA)的阵元数为M+1,SULA的阵元间距d1,
子阵1还包括一个距原点的间距为d的辅助阵元;子阵2平行于子阵1,包括M2=M个阵元,其
中M个阵元皆为SULA阵元,阵元间距为d1,且左端点阵元与子阵1的左端点对齐。其中d=0.5
λ,d1=λ,λ为载波波长。本实施例中M=5。

将图1所示的稀疏双平行线阵用于对K=2个不相关信源的入射信号的二维DOA估
计,用α、β表示入射信号的入射方向在水平方向、竖直方向的夹角,通过下标k(k=1,2)区分
不同的入射信号,即αk、βk,二维DOA估计的步骤为:

步骤1:接收入射信号,得到各阵元的接收数据;

步骤2:求传播矩阵Pc:

将第一子阵中除辅助阵元外的所有阵元的接收数据记为x1(t),将第二子阵的所
有阵元的接收数据记为x2(t),堆叠x1(t)和x2(t)得到接收数据z(t),计算z(t)在N=100次
采样下的互相关矩阵即:

为11列的矩阵,将的前2列记为后9列记为由和之间的线性关
系,求得矩阵其中符号(·)+表示M-P广义逆;再将一个2×2维的单位阵和矩阵
堆叠起来,得到所需的11×2维传播矩阵Pc,即:

步骤3:求cosβ的估计值:首先对Pc按行划分,将Pc的前5行记为P1,最后5行记为P3;
然后利用P1和P3之间的线性关系求得包含β全部信息的矩阵F1=P1HP3,最后对F1进行特征分
解,得到F1的K个特征值λ1,λ2和相应的2个特征向量,并将特征向量按?#20449;?#25918;构成的矩阵记
为从而第k个入射信号的cosβ估计值为

步骤4:求Φ1的估计值

基于Pc和求得阵列流型矩阵A的估计?#31561;?#21518;对所求的进行划分,将
的前5行构成矩阵第7至10行构成矩阵从而得到

将的第2至6行构成矩阵第8至11行构成矩阵从而得到

利用B1和B2之间的线性关系,得:其中,的对角线元素即为Φ1的对角
线元素的重排,且与F1的特征值一一对应,因而由的第k个对角线元素求得的cosαk和F1的
第k个特征值求得的cosβk是自动配对的。

步骤5:求cosα的两组备选估计值:

根据公式计算第k个入射信号的第一个备选的估计
值cosα′k;

根据公式计算空间相位差若则第k个入射信号的
第二个备选的估计值否则

步骤6:对两组cosα的备选估计?#21040;?#34892;去模糊处理,得到无模糊的估计值:

将子阵1的所有阵元的接收数据记为x(t)首,并计算x(t)在N=100次采样下的自
相关矩阵接着对进行特征值分解:得到前2个最大特征值和前5个最小特征值,并将
前5个最小特征值对应的特征向量记为噪声子空间Un;

将两组备选估计值代入子阵1的阵列流型中,分别得到两组备选角对应的阵列流
型矩阵 的估计值和从而第k个信号的两个备选估计值
对应的导向矢量分别为和的第k列,即:



其中e表示自然底数,j表示虚数单位,d=0.5λ,d1=λ,λ为载波波长。

通过比较和的大小将第k个信号的模
糊角去除,若则第k个信号对应的cosαk的估
计值为 否则

步骤7:根据计算各入射信号的俯仰角和方位角估计值

俯仰角估计值方位角估计值其中
即和和

即在本实施例中,信噪比为20dB、采样数为N=100次,对两个信号(S1、S2)进行测
定。经过测定其俯仰角和方位角估计值分别为:

S1:S2:

为了评估方法的性能,经过1000次独立重?#35789;?#39564;测定所得的俯仰角和方位角估计
值的统计平均值分别为:S1:S2:

相应的俯仰角和方位角估计值的均方根误差分别为:

S1:[RMSE(θ1),RMSE(φ1)]=[0.0421°,0.1261°]、S2:[RMSE(θ2),RMSE(φ2)]=
[0.0367°,0.1151°]。

从上可知,在总天线数为12,信噪比为20dB,快拍数N=100,1000次独立重复试验
的条件下测得的两个信号的俯仰角估计值的均方根误差小于0.04度,方位角估计值的均方
根误差大约在0.012度左右。

为了进一步验证算法的性能,在子阵1的天线数为7,子阵2的天线数为5,采样快拍
数N=100的情形下,将本发明与背景技术中所提到三种现有方法进行比对,分别经过1000
次独立实验验证俯仰角和方位角估计误差随信噪比变化的轨迹,其结果如图2(a),2(b)所
示。

以及在子阵1的天线数为7,子阵2的天线数为5,信噪比为10dB,的情况下,将本发
明与背景技术中所提到三种现有方法进行比对,分别经过1000次独立实验验证俯仰角和方
位 角的估计误差随采样快拍数变化的轨迹,其结果如图3(a),3(b)所示。

由图2、3可知,本发明的二维DOA估计方法能够很好的提高二维DOA估计的测向精
度,并在一定程度上?#26723;?#35745;算复杂度。

以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别
叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方
法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组?#31232;?br />

关于本文
本文标题:一种稀疏双平行线阵及二维波达方向估计方法.pdf
链接地址:http://www.pqiex.tw/p-5994823.html
关于我们 - 网站声明 - 网?#38236;?#22270; - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 内蒙古十一选五八十五期 体坛网排列五走势图 开心棋牌游戏 31名合买彩票 免费下载娱网棋牌 现场比分 宁夏十一选五开奖结果走势图 大乐透彩票五行出奖规律 云南11选5 幸运赛车下载