平码五不中公式规律
  • / 8
  • 下载费用:30 金币  

一种基于SURF算法的多模态医学图像配准方法.pdf

关 键 ?#21097;?/dt>
一种 基于 SURF 算法 多模态 医学 图像 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201710006382.2

申请日:

2017.01.05

公开号:

CN106683127A

公开日:

2017.05.17

当前法律状态:

实审

?#34892;?#24615;:

审中

法?#19978;?#24773;: 专利申请权的转移IPC(主分类):G06T 7/33登记生效日:20181024变更事项:申请人变更前权利人:南京觅踪电子科技有限公司变更后权利人:卡本(深圳)医疗科技有限公司变更事项:地址变更前权利人:210000 江苏省南京?#26032;?#21488;街141号3号楼403?#20918;?#26356;后权利人:518000 广东省深圳市南山区粤海街道科苑路15号科兴科学园B1栋701-72|||著录事项变更IPC(主分类):G06T 7/33变更事项:发明人变更前:王晓芳变更后:?#29575;?#24179; 王晓芳|||实质审查的生效IPC(主分类):G06T 7/33申请日:20170105|||公开
IPC分类号: G06T7/33(2017.01)I 主分类号: G06T7/33
申请人: 南京觅踪电子科技有限公司
发明人: 王晓芳
地址: 210000 江苏省南京?#26032;?#21488;街141号3号楼403室
优?#28909;ǎ?/td>
专利代理机构: ?#26412;┧即?#22823;成知识产权代理有限公司 11614 代理人: 王尧
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201710006382.2

授权公告号:

|||||||||

法律状态公告日:

2018.11.13|||2018.09.14|||2017.06.09|||2017.05.17

法律状态类型:

专利申请权、专利权的转移|||著录事项变更|||实质审查的生效|||公开

摘要

一种基于SURF算法的多模态医学图像配准方法,它包括以下步骤:S1、利用SURF算法提取不同模态医学图像中的特征点;S2、确定各模态医学图像中特征点的主方向,并构造对应的SURF特征描述子;S3、对特征点的SURF特征描述子进行矩阵运算,获取转换矩阵;S4、使用转换矩阵完成不同模态医学图像配准。本发明的SURF算法相比于SIFT算法,计算速率大大提高了。利用GPU等并行化技术可以使得大分辨率图像的线性配准达到实时。

权利要求书

1.一种基于SURF算法的多模态医学图像配准方法,其特征是它包括以下步骤:
S1、利用SURF算法提取不同模态医学图像中的特征点;
S2、确定各模态医学图像中特征点的主方向,并构造对应的SURF特征描述子;
S3、对特征点的SURF特征描述子进行矩阵运算,获取转换矩阵;
S4、使用转换矩阵完成不同模态医学图像配准。
2.根据权利要求1所述的基于SURF算法的多模态医学图像配准方法,其特征是所述的
步骤S1中,利用SURF算法提取的不同模态医学图像中的特征点具体为:
S1.1、根据Hessian矩阵,计算特征值α,具体步骤如下:
S1.1-1、利用下述Hessian矩阵公式计算出不同模态医学图像中各个像素点的Hessian
矩阵:
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>&sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&sigma;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&sigma;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&sigma;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&sigma;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,x表示各模态医学图像中各个像素点的灰度值,Lxx(x,σ),Lxy(x,σ),Lyy(x,σ)表示
当前像素在x,y方向上的二阶偏导数,也即二阶标准高斯函数对图像的卷积;
S1.1-2、对于各模态医学图像,分别采用下属公式计算各个像素点的Hessian矩阵行列
式的近似值作为对应像素点的特征值α:
α=LxxLyy-(0.9Lxy)2
S1.2、根据SURF算法特性构造高斯金字塔,根据像素点的特征值α是否为邻域极大值判
断特征点,具体步骤为:
S1.2-1、构造SURF高斯金字塔,前述金字塔分为若干层,每一层均作为一个频?#30830;?#22260;
Octave,每个Octave尺度不同的图片,在SURF算法中图片大小即尺寸始终保持不变;
S1.2-2、在构造好的SURF高斯金字塔中,将经过步骤S1.1-1中Hessian矩阵处理过的每
个像素点与其在SURF高斯金字塔中三维领域的26个点进行大小数值比较,若该像素点为这
26个点中的最大值或最小值,则将像素点保留下来,作为初步的特征点,否则,采用三维线
性插值算法得到亚像素级特征点。
3.根据权利要求2所述的基于SURF算法的多模态医学图像配准方法,其特征是所述的
步骤S1.2-1中,每一层Octave的获取方式是?#21644;?#36807;对原始图片进行不同尺度的高斯模糊得
到的,同一Octave中的各个图片也是通过不同高斯模糊尺度的模糊得到的。
4.根据权利要求1所述的基于SURF算法的多模态医学图像配准方法,其特征是所述的
步骤S2中,确定特征点主方向并构造SURF特征描述子,提取不同模态医学图像的特征点具
体为:
S2.1、根据SURF算法特性统计特征点邻域内的Harr小波特征,选择最长矢量的方向为
该特征点的主方向,具体步骤为:
S2.1-1、统计任一特征点领域内的Harr小波特征,即以特征点为中?#27169;?#35745;算半径为6s的
邻域内,s为特征点所在的尺度值,统计60°扇?#25991;?#25152;有点在水平x和垂直y方向的Harr小波
响应总和(Harr小波边长取4s,s为特征点所在的尺度值,并给这些Harr小波响应值?#25104;?#39640;
斯权重系数,高斯权重系数由高斯模型在不同的角度和距离上确定,权重系数的和为1);然
后将60°范围内的响应相加以形成特征矢量(特征值加上方向信息即形成特征矢量),遍历
整个圆形区域,覆盖整个360°,选择最长矢量的方向为该特征点的主方向。
遍历所有的特征点,得到每个特征点的主方向。
S2.2、根据S2.1步骤中得到的方向构造对应特征点的SURF特征描述子,具体方法为:
S2.2-1、在特征点邻域范围内取一个正方形框,框的边长为20s(s是该特征点所在的尺
度值),该框的方向即为步骤S2.1得到的主方向;
S2.2-2、把该框分为16个子区域,每个子区域统计25个像素的水平方向和垂直方向的
Harr小波特征,前述水平和垂直方向均为相对特征点的主方向而言。该Harr小波特征为:水
平方向灰度值之和∑dx,水平方向灰度值绝对值之和∑|dx|,垂直方向灰度值之和∑dy,以
及垂直方向灰度值绝对值之和∑|dy|,对于每个特征点,建立64维向量作为该特征点的
SURF特征描述子,其中列向量对应16个子区域,行向量对应各子区域的4个Harr小波特征参
数值。
5.根据权利要求1所述的基于SURF算法的多模态医学图像配准方法,其特征是所述的
步骤S3具体为:
S3.1对于各模态医学图像中相应位置的图像以遍历的方式计算两张图像所有特征点
描述子的内积,
即对于来自两张图像的对应的两个特征点,计算64维特征向量的内积,按照数值从大
到小进行?#21028;潁?#24471;到?#21028;?#21518;的特征点序列,其中数值最大者为最匹配的点;
S3.2、对前述?#21028;?#21518;的特征点序列进行矩阵运算,得到配准需要的3X3转换矩阵。
6.根据权利要求5所述的基于SURF算法的多模态医学图像配准方法,其特征是所述的
步骤S3还包括以下步骤:设定阈值,在?#21028;?#21518;的特征点序列中,选择大于前述阈值的配对特
征点进行矩阵运算。
7.根据权利要求6所述的基于SURF算法的多模态医学图像配准方法,其特征是阈值的
设置方法为?#21644;?#36807;对大量不同模态的医学图像的机器学习,设置特征点的评判阈值。
8.根据权利提要求1所述的基于SURF算法的多模态医学图像配准方法,配准过程如下:
S4.1使用S3.3计算得到的转换矩阵对待配准图像进行卷积,得到每个像素点新的坐
标,并使用双三次插值方法计算配准后的像素值。从而完成两幅不同模态图像的配准。

说明书

一种基于SURF算法的多模态医学图像配准方法

技术领域

本发明涉及医疗图像处理领域,尤其是一种能够提高病灶或?#34892;?#36259;部位的配准精
度,有助于临床诊断、放射治疗计划的制定和评价的基于SURF算法的多模态医学图像配准
方法。

背景技术

目前,随着计算机科学技术和医疗影响工程学的快速发展,世界上出现了许多先
进的医疗成像设备,为临床医学诊断提供了多种模态的医学图像,这些图像从不同方面反
映了人体结构、脏器和病变组织的不同信息。

比如CT(ComputedTomography)图像具有较强的空间分辨率?#22270;?#20309;特性,对骨骼的
成像非常清晰,它可对病灶定位提供较好的参照,但对软组织的对比度则相对较低。MR
(MagneticResonance)图像可以清晰地?#20174;?#36719;组织、器官、血管等的解?#24335;?#26500;,有利于确定
病灶范围,但是MR图像对钙化点不敏感,且受到磁干扰会发生几何失真。SPEC、PET图像能得
到人体?#25105;?#35282;度断层面的放射性浓?#30830;?#24067;,可以?#20174;?#32452;织器官的代谢水平和血流状况,对
肿瘤病变呈现“热点?#20445;?#25552;供人体的功能信息,但是它们的分辨率差,很难得到精确的解?#24335;?br />构,也不易分辨组织、器官的边界。由此可见,不同成像技术有着自身的优势也同时拥有一
些局限性,这些图像对人体同一解?#24335;?#26500;所得到的形态和功能信息是互为差异、互为补充
的。

在临床诊断中,单一模态的图像往往不能提供医生所需要的足够信息,因此,如果
能将不同模态的医学图像进行适当的融合,使解剖信息和功能信息有机地结合起来,在一
幅图像上同时综合地表达来自多种成像源的信息,以便医生了解病变组织或器官的综合情
况,并做出更加准确的诊断或制定出更加科学优化的治疗方案,这必将推动现代医学临床
技术的巨大进步。

由于从医学图像角度来看MR与CT图像的图像内容是不同的,因?#23435;?#20204;在此发明中
引入了基于改良的SURF算法的图像配准方法来介绍如何进行精准的MR与CT图像的配准。

发明内容

本发明的目的是针对多源图像间的配准问题,提出一种基于SURF算法的多模态医
学图像配准方法。此种基于SURF算法的图像配准方法可以实现多模态医学图像融合过程中
至关重要的一步——图像配准。此方法可实现精准图像配准,同时相比于类似的SIFT算法,
此方法使用SURF算法可以快速完成图像配准过程。

本发明的技术方案是:

一种基于SURF算法的多模态医学图像配准方法,它包括以下步骤:

S1、利用SURF算法提取不同模态医学图像中的特征点;

S2、确定各模态医学图像中特征点的主方向,并构造对应的SURF特征描述子;

S3、对特征点的SURF特征描述子进行矩阵运算,获取转换矩阵;

S4、使用转换矩阵完成不同模态医学图像配准。

本发明的步骤S1中,利用SURF算法提取的不同模态医学图像中的特征点具体为:

S1.1、根据Hessian矩阵,计算特征值α,具体步骤如下:

S1.1-1、利用下述Hessian矩阵公式计算出不同模态医学图像中各个像素点的
Hessian矩阵:


其中,x表示各模态医学图像中各个像素点的灰度值,Lxx(x,σ),Lxy(x,σ),Lyy(x,σ)
表?#38236;?#21069;像素在x,y方向上的二阶偏导数,也即二阶标准高斯函数对图像的卷积;

S1.1-2、对于各模态医学图像,分别采用下属公式计算各个像素点的Hessian矩阵
行列式的近似值作为对应像素点的特征值α:

α=LxxLyy-(0.9Lxy)2

S1.2、根据SURF算法特性构造高斯金字塔,根据像素点的特征值α是否为邻域极大
值判断特征点,具体步骤为:

S1.2-1、构造SURF高斯金字塔,前述金字塔分为若干层,每一层均作为一个频?#30830;?br />围Octave,每个Octave尺度不同的图片,在SURF算法中图片大小即尺寸始终保持不变;

S1.2-2、在构造好的SURF高斯金字塔中,将经过步骤S1.1-1中Hessian矩阵处理过
的每个像素点与其在SURF高斯金字塔中三维领域的26个点进行大小数值比较,若该像素点
为这26个点中的最大值或最小值,则将像素点保留下来,作为初步的特征点,否则,采用三
维线性插值算法得到亚像素级特征点。

本发明的步骤S1.2-1中,每一层Octave的获取方式是?#21644;?#36807;对原始图片进行不同
尺度的高斯模糊得到的,同一Octave中的各个图片也是通过不同高斯模糊尺度的模糊得到
的。

本发明的步骤S2中,确定特征点主方向并构造SURF特征描述子,提取不同模态医
学图像的特征点具体为:

S2.1、根据SURF算法特性统计特征点邻域内的Harr小波特征,选择最长矢量的方
向为该特征点的主方向,具体步骤为:

S2.1-1、统计任一特征点领域内的Harr小波特征,即以特征点为中?#27169;?#35745;算半径为
6s的邻域内,s为特征点所在的尺度值,统计60°扇?#25991;?#25152;有点在水平x和垂直y方向的Harr
小波响应总和(Harr小波边长取4s,s为特征点所在的尺度值,并给这些Harr小波响应值赋
上高斯权重系数,高斯权重系数由高斯模型在不同的角度和距离上确定,权重系数的和为
1);然后将60°范围内的响应相加以形成特征矢量(特征值加上方向信息即形成特征矢量),
遍历整个圆形区域,覆盖整个360°,选择最长矢量的方向为该特征点的主方向。

遍历所有的特征点,得到每个特征点的主方向。

S2.2、根据S2.1步骤中得到的方向构造对应特征点的SURF特征描述子,具体方法
为:

S2.2-1、在特征点邻域范围内取一个正方形框,框的边长为20s(s是该特征点所在
的尺度值),该框的方向即为步骤S2.1得到的主方向;

S2.2-2、把该框分为16个子区域,每个子区域统计25个像素的水平方向和垂直方
向的Harr小波特征,前述水平和垂直方向均为相对特征点的主方向而言。该Harr小波特征
为:水平方向灰度值之和∑dx,水平方向灰度值绝对值之和∑|dx|,垂直方向灰度值之和∑
dy,以及垂直方向灰度值绝对值之和∑|dy|,对于每个特征点,建立64维向量作为该特征点
的SURF特征描述子,其中列向量对应16个子区域,行向量对应各子区域的4个Harr小波特征
参数值。

本发明的步骤S3具体为:

S3.1对于各模态医学图像中相应位置的图像以遍历的方式计算两张图像所有特
征点描述子的内积,

即对于来自两张图像的对应的两个特征点,计算64维特征向量的内积,按照数值
从大到小进行?#21028;潁?#24471;到?#21028;?#21518;的特征点序列,其中数值最大者为最匹配的点;

S3.2、对前述?#21028;?#21518;的特征点序列进行矩阵运算,得到配准需要的3X3转换矩阵。

本发明的步骤S3还包括以下步骤:设定阈值,在?#21028;?#21518;的特征点序列中,选择大于
前述阈值的配对特征点进行矩阵运算。

本发明的阈值的设置方法为?#21644;?#36807;对大量不同模态的医学图像的机器学习,设置
特征点的评判阈值。

本发明的配准过程如下:

S4.1使用S3.3计算得到的转换矩阵对待配准图像进行卷积,得到每个像素点新的
坐标,并使用双三次插值方法计算配准后的像素值。从而完成两幅不同模态图像的配准。

本发明的有益效果:

本发明的SURF算法相比于SIFT算法,计算速率大大提高了。利用GPU等并行化技术
可以使得大分辨率图像的线性配准达到实时。

具体实施方式

下面结合实施例对本发明作进一步的说明。

一种基于SURF算法的多模态医学图像配准方法,它包括以下步骤:

S1、利用SURF算法提取不同模态医学图像中的特征点;步骤S1中,利用SURF算法提
取的不同模态医学图像中的特征点具体为:

S1.1、根据Hessian矩阵,计算特征值α,具体步骤如下:

S1.1-1、利用下述Hessian矩阵公式计算出不同模态医学图像中各个像素点的
Hessian矩阵:


其中,x表示各模态医学图像中各个像素点的灰度值,Lxx(x,σ),Lxy(x,σ),Lyy(x,σ)
表?#38236;?#21069;像素在x,y方向上的二阶偏导数,也即二阶标准高斯函数对图像的卷积;

S1.1-2、对于各模态医学图像,分别采用下属公式计算各个像素点的Hessian矩阵
行列式的近似值作为对应像素点的特征值α:

α=LxxLyy-(0.9Lxy)2

S1.2、根据SURF算法特性构造高斯金字塔,根据像素点的特征值α是否为邻域极大
值判断特征点,具体步骤为:

S1.2-1、构造SURF高斯金字塔,前述金字塔分为若干层,每一层均作为一个频?#30830;?br />围Octave,每个Octave尺度不同的图片,在SURF算法中图片大小即尺寸始终保持不变;(其
中?#22909;?#19968;层Octave的获取方式是?#21644;?#36807;对原始图片进行不同尺度的高斯模糊得到的,同一
Octave中的各个图片也是通过不同高斯模糊尺度的模糊得到的)

S1.2-2、在构造好的SURF高斯金字塔中,将经过步骤S1.1-1中Hessian矩阵处理过
的每个像素点与其在SURF高斯金字塔中三维领域的26个点进行大小数值比较,若该像素点
为这26个点中的最大值或最小值,则将像素点保留下来,作为初步的特征点,否则,采用三
维线性插值算法得到亚像素级特征点。

S2、确定各模态医学图像中特征点的主方向,并构造对应的SURF特征描述子,S2
中,确定特征点主方向并构造SURF特征描述子,提取不同模态医学图像的特征点具体为:

S2.1、根据SURF算法特性统计特征点邻域内的Harr小波特征,选择最长矢量的方
向为该特征点的主方向,具体步骤为:

S2.1-1、统计任一特征点领域内的Harr小波特征,即以特征点为中?#27169;?#35745;算半径为
6s的邻域内,s为特征点所在的尺度值,统计60°扇?#25991;?#25152;有点在水平x和垂直y方向的Harr
小波响应总和(Harr小波边长取4s,s为特征点所在的尺度值,并给这些Harr小波响应值赋
上高斯权重系数,高斯权重系数由高斯模型在不同的角度和距离上确定,权重系数的和为
1);然后将60°范围内的响应相加以形成特征矢量(特征值加上方向信息即形成特征矢量),
遍历整个圆形区域,覆盖整个360°,选择最长矢量的方向为该特征点的主方向。

遍历所有的特征点,得到每个特征点的主方向。

S2.2、根据S2.1步骤中得到的方向构造对应特征点的SURF特征描述子,具体方法
为:

S2.2-1、在特征点邻域范围内取一个正方形框,框的边长为20s(s是该特征点所在
的尺度值),该框的方向即为步骤S2.1得到的主方向;

S2.2-2、把该框分为16个子区域,每个子区域统计25个像素的水平方向和垂直方
向的Harr小波特征,前述水平和垂直方向均为相对特征点的主方向而言。该Harr小波特征
为:水平方向灰度值之和∑dx,水平方向灰度值绝对值之和∑|dx|,垂直方向灰度值之和∑
dy,以及垂直方向灰度值绝对值之和∑|dy|,对于每个特征点,建立64维向量作为该特征点
的SURF特征描述子,其中列向量对应16个子区域,行向量对应各子区域的4个Harr小波特征
参数值。

S3、对特征点的SURF特征描述子进行矩阵运算,获取转换矩阵,步骤S3具体为:

S3.1对于各模态医学图像中相应位置的图像以遍历的方式计算两张图像所有特
征点描述子的内积,

即对于来自两张图像的对应的两个特征点,计算64维特征向量的内积,按照数值
从大到小进行?#21028;潁?#24471;到?#21028;?#21518;的特征点序列,其中数值最大者为最匹配的点;

S3.2、对前述?#21028;?#21518;的特征点序列进行矩阵运算,得到配准需要的3X3转换矩阵。

步骤S3还包括以下步骤:设定阈值,在?#21028;?#21518;的特征点序列中,选择大于前述阈值
的配对特征点进行矩阵运算;阈值的设置方法为?#21644;?#36807;对大量不同模态的医学图像的机器
学习,设置特征点的评判阈值。

S4、使用转换矩阵完成不同模态医学图像配准,配准过程如下:

S4.1使用S3.3计算得到的转换矩阵对待配准图像进行卷积,得到每个像素点新的
坐标,并使用双三次插值方法计算配准后的像素值。从而完成两幅不同模态图像的配准。

本发明的SURF算法相比于SIFT算法,计算速率大大提高了。利用GPU等并行化技术
可以使得大分辨率图像的线性配准达到实时。

本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

关于本文
本文标题:一种基于SURF算法的多模态医学图像配准方法.pdf
链接地址:http://www.pqiex.tw/p-6079569.html
关于我们 - 网站声明 - 网?#38236;?#22270; - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 hi分分彩计划 上海时时乐杀号定胆 山东群英会彩乐乐 江苏十一选五官网 彩票开奖结果 北京十一选五前三直 娱网棋牌官方下载 nba竞彩微信公众号 上海普陀股票配资公司 双色球012尾号走势分析图