平码五不中公式规律
  • / 14
  • 下载费用:30 金币  

基于卫星遥感影像的冻土灾害信息提取方法及装置.pdf

关 键 ?#21097;?/dt>
基于 卫星 遥感 影像 冻土 灾害 信息 提取 方法 装置
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201710056571.0

申请日:

2017.01.25

公开号:

CN106683096A

公开日:

2017.05.17

当前法律状态:

实审

有效性:

审中

法?#19978;?#24773;: 实质审查的生效IPC(主分类):G06T 7/00申请日:20170125|||公开
IPC分类号: G06T7/00(2017.01)I; G06K9/00; G06K9/32 主分类号: G06T7/00
申请人: 中国科学院寒区旱区环境与工程研究所
发明人: 祁元; 王建华; 王宏伟; 张金龙; 贾永娟
地址: 730000 甘肃省?#36158;?#24066;城关区东岗西路320号
优?#28909;ǎ?/td>
专利代理机构: ?#26412;?#36229;凡志成知识产权代理事务所(普通合伙) 11371 代理人: 吴开磊
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201710056571.0

授权公告号:

|||

法律状态公告日:

2017.06.09|||2017.05.17

法律状态类型:

实质审查的生效|||公开

摘要

本申请提供了一种基于卫星遥感影像的冻土灾害信息提取方法及装置。利用卫星遥感影像数据,结合基于冻土区域的冻土灾害类型条件,使用计算机自动分类、人机交互解译或波段合成的方法,可以从卫星遥感影像数据提取出符合冻土灾害类型条件的信息。从而可以构建相关区域的冻土灾害信息数据库,分析不良冻土地质现象对道路等其他工程潜在的威胁及由此可能导致的工程病害,为对降低工程病害的发生率和自然灾害对工程造成的破坏提供科学指导,为未来区内新建重大冻土工程的设计和施工提供科学依据,同时保护工程沿线生态环境。

权利要求书

1.一种基于卫星遥感影像的冻土灾害信息提取方法,其特征在于,该方法包括:
获取不同时相的目标区域的卫星遥感影像数据;
对所述卫星遥感影像数据进行预处理,以完成全色波段和多光谱波段图像的融合;
基于冻土区域的基础资料、解译要素和解译标志,构建冻土灾害分类?#20302;?#21644;解译标志;
根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述冻土灾害类型
条件的冻土灾害信息。
2.根据权利要求1所述的基于卫星遥感影像的冻土灾害信息提取方法,其特征在于,对
所述卫星遥感影像数据进行预处理的步骤包括:
获取所述卫星遥感影像数据中的多光谱高分数据;
对所述卫星遥感影像数据进行辐射定标,将各载荷的通道观测计数值转换为卫星载荷
等效表观辐亮度数据;对多光谱高分数据进行辐射定标的公式为:
Le(ρe)=Gain·DN+Bias
式中,Gain为定标斜率,DN为卫星载荷观测值,Bias为定标截距;
获取与所述多光谱高分数据对应的波谱响应函数,对经过辐射定标的多光谱高分数据
进行大气校正;
建立有理多项式函数模型,对经过大气校正的多光谱高分数据进行正射校正;在所述
有理多项式函数模型中,采用一阶多项式来表示由光学投影引起的畸变误差模型,采用二
阶多项式趋近由地球曲率、投影折射、?#20302;?#20542;?#24065;?#36215;的畸变,采用三阶多项式来模拟高阶部
分的其他畸变,及采用正解和反解变换进行所述正射校正;
根据所述有理多项式函数模型中系数填充多项式的系数,及输入未校正的影像得到待
输出影像的地理?#27573;А?#22320;面分辨率大小以及?#24459;?#21464;换参数,获取待输出影像上每个像素对
应的地理坐标,将所述地理坐标变换为原始影像上的行列号,根据预设插值算法获取所述
待输出影像上的对应的像素值,将对应的像素值写入到所述待输出影像中;
对所述卫星遥感影像数据中的全色波段数据进行辐射定标和正射校正,将处理后的多
光谱高分数据和全色波段数据融合,得到所述目标区域的影像图。
3.根据权利要求2所述的基于卫星遥感影像的冻土灾害信息提取方法,其特征在于,基
于基础资料、解译要素和解译标志,构建冻土灾害分类?#20302;?#21644;解译标志的步骤包括:
获取所述目标区域的水文地质数据、工程地质数据、环境地质数据、遥感数据;
根据所述解译要素及解译标志获取冻土灾害类型,其中,所述解译要素包括地物形状、
地物大小、地物粗糙?#21462;?#22320;物反射差、地物纹理、地物色调;所述解译标志包括但不限于所述
目标区域的地形地?#30149;?#20923;土现象、冻土灾害;结合多时相遥感图像,构建所述冻土灾害类型
包括但不限于冰锥、冰幔、湿地、草甸、冻胀丘、疑似冻胀丘、冻结湖塘、湿地、工程湿地、草甸
其中的一种或多种。
4.根据权利要求3所述的基于卫星遥感影像的冻土灾害信息提取方法,其特征在于,根
据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述冻土灾害类型条件的
冻土灾害信息的步骤包括:
通过计算机自动分类与人机交互目视解译相结合的方法,提取所述目标区域的冻土灾
害类型及空间分布信息。
5.根据权利要求3所述的基于卫星遥感影像的冻土灾害信息提取方法,其特征在于,根
据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述冻土灾害类型条件的
冻土灾害信息的步骤包括:
采用波段合成的方法进行提取。
6.一种基于卫星遥感影像的冻土灾害信息提取装置,其特征在于,该装置包括:
数据获取模块,用于获取不同时相的目标区域的卫星遥感影像数据;
数据处理模块,用于对所述卫星遥感影像数据进行预处理,以完成全色波段和多光谱
波段图像的融合;
冻土灾害类型分类模块,用于基于冻土区域的基础资料、解译要素和解译标志,提取冻
土灾害类型;
信息提取模块,用于根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符
合所述冻土灾害类型条件的冻土灾害信息。
7.根据权利要求6所述的基于卫星遥感影像的冻土灾害信息提取装置,其特征在于,所
述数据处理模块对所述卫星遥感影像数据进行预处理的方法包括:
获取所述卫星遥感影像数据中的多光谱高分数据;
对所述卫星遥感影像数据进行辐射定标,将各载荷的通道观测计数值转换为卫星载荷
等效表观辐亮度数据;对多光谱高分数据进行辐射定标的公式为:
Le(ρe)=Gain·DN+Bias
式中,Gain为定标斜率,DN为卫星载荷观测值,Bias为定标截距;
获取与所述多光谱高分数据对应的波谱响应函数,对经过辐射定标的多光谱高分数据
进行大气校正;
建立有理多项式函数模型,对经过大气校正的多光谱高分数据进行正射校正;在所述
有理多项式函数模型中,采用一阶多项式来表示由光学投影引起的畸变误差模型,采用二
阶多项式趋近由地球曲率、投影折射、?#20302;?#20542;斜等因素引起的畸变,采用三阶多项式来模拟
高阶部分的其他畸变,及采用正解和反解变换进行所述正射校正;
根据所述有理多项式函数模型中系数填充多项式的系数,及输入未校正的影像得到待
输出影像的地理?#27573;А?#22320;面分辨率大小以及?#24459;?#21464;换参数,获取待输出影像上每个像素对
应的地理坐标,将所述地理坐标变换为原始影像上的行列号,根据预设插值算法获取所述
待输出影像上的对应的像素值,将对应的像素值写入到所述待输出影像中;
对所述卫星遥感影像数据中的全色波段数据进行辐射定标和正射校正,将处理后的多
光谱高分数据和全色波段数据融合,得到所述目标区域的影像图。
8.根据权利要求7所述的基于卫星遥感影像的冻土灾害信息提取装置,其特征在于,所
述冻土灾害类型分类模块基于基础资料、解译要素和解译标志,提取冻土灾害类型的方法
包括:
获取所述目标区域的水文地质数据、工程地质数据、环境地质数据、遥感数据;
根据所述解译要素及解译标志获取冻土灾害类型,其中,所述解译要素包括地物形状、
地物大小、地物粗糙?#21462;?#22320;物反射差、地物纹理、地物色调;所述解译标志包括但不限于所述
目标区域的地?#30149;?#20923;土现象、冻土灾害;构建所述冻土灾害类型包括但不限于冰锥、冰幔、湿
地、草甸、冻胀丘、疑似冻胀丘、冻结湖塘、湿地、工程湿地、草甸其中的一种或多种。
9.根据权利要求8所述的基于卫星遥感影像的冻土灾害信息提取装置,其特征在于,所
述信息提取模块根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述冻
土灾害类型条件的冻土灾害信息的方法包括:
通过计算机自动分类与人机交互目视解译相结合的方法,提取所述目标区域的冻土灾
害类型及空间分布信息。
10.根据权利要求8所述的基于卫星遥感影像的冻土灾害信息提取装置,其特征在于,
所述信息提取模块根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述
冻土灾害类型条件的冻土灾害信息的方法包括:
采用波段合成的方法进行提取。

说明书

基于卫星遥感影像的冻土灾害信息提取方法及装置

技术领域

本发明涉及遥感处理技术领域,具体而言,涉及一种基于卫星遥感影像的冻土灾
害信息提取方法及装置。

背景技术

冻土是指零摄氏度以下,并含有冰的各种岩石和土壤。一般可分为短时冻土(数小
时/数?#25214;灾?#21322;月)、季节冻土(半月至数月)以及多年冻土(又称永久冻土,指的是持续二年
或二年以上的冻结不融的土层)。地球上多年冻土、季节冻土和短时冻土区的面积约占陆地
面积的50%,其中,多年冻土面积占陆地面积的25%。冻土是一种对温度极为敏感的土体介
质,含有丰富的地下冰。因此,冻土具有流变性,其长期强度远低于瞬时强度特征。正由于这
些特征,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉。

因此,冻土区的地貌和地质变化对公?#26041;?#35774;、建筑物建设和日常维护等生产生活
具有十?#31181;?#35201;的?#23548;?#24847;义。现有技术?#32961;?#27809;有?#20302;?#30340;对冻土区域的地?#30149;?#20923;土灾害等进行
分析处理的方法。

发明内容

有鉴于此,本发明提供了一种基于卫星遥感影像的冻土灾害信息提取方法及装
置,能够实现对冻土区域地貌特征的分析。

本发明提供的技术方案如下:

一种基于卫星遥感影像的冻土灾害信息提取方法,该方法包括:

获取不同时相的目标区域的卫星遥感影像数据;

对所述卫星遥感影像数据进行预处理,以完成全色波段和多光谱波段图像的融
合;

基于冻土区域的基础资料、解译要素和解译标志,构建冻土灾害分类?#20302;?#21644;解译
标志;

根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述冻土灾害
类型条件的冻土灾害信息。

优选地,对所述卫星遥感影像数据进行预处理的步骤包括:

获取所述卫星遥感影像数据中的多光谱高分数据;

对所述卫星遥感影像数据进行辐射定标,将各载荷的通道观测计数值转换为卫星
载荷等效表观辐亮度数据;对多光谱高分数据进行辐射定标的公式为:

Le(ρe)=Gain·DN+Bias

式中,Gain为定标斜率,DN为卫星载荷观测值,Bias为定标截距;

获取与所述多光谱高分数据对应的波谱响应函数,对经过辐射定标的多光谱高分
数据进行大气校正;

建立有理多项式函数模型,对经过大气校正的多光谱高分数据进行正射校正;在
所述有理多项式函数模型中,采用一阶多项式来表示由光学投影引起的畸变误差模型,采
用二阶多项式趋近由地球曲率、投影折射、?#20302;?#20542;?#24065;?#36215;的畸变,采用三阶多项式来模拟高
阶部分的其他畸变,及采用正解和反解变换进行所述正射校正;

根据所述有理多项式函数模型中系数填充多项式的系数,及输入未校正的影像得
到待输出影像的地理?#27573;А?#22320;面分辨率大小以及?#24459;?#21464;换参数,获取待输出影像上每个像
素对应的地理坐标,将所述地理坐标变换为原始影像上的行列号,根据预设插值算法获取
所述待输出影像上的对应的像素值,将对应的像素值写入到所述待输出影像中;

对所述卫星遥感影像数据中的全色波段数据进行辐射定标和正射校正,将处理后
的多光谱高分数据和全色波段数据融合,得到所述目标区域的影像图。

优选地,基于基础资料、解译要素和解译标志,构建冻土灾害分类?#20302;?#21644;解译标志
的步骤包括:

获取所述目标区域的水文地质数据、工程地质数据、环境地质数据、遥感数据;

根据所述解译要素及解译标志获取冻土灾害类型,其中,所述解译要素包括地物
形状、地物大小、地物粗糙?#21462;?#22320;物反射差、地物纹理、地物色调;所述解译标志包括但不限
于所述目标区域的地形地?#30149;?#20923;土现象、冻土灾害;结合多时相遥感图像,构建所述冻土灾
害类型包括但不限于冰锥、冰幔、湿地、草甸、冻胀丘、疑似冻胀丘、冻结湖塘、湿地、工程湿
地、草甸其中的一种或多种。

优选地,根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述
冻土灾害类型条件的冻土灾害信息的步骤包括:

通过计算机自动分类与人机交互目视解译相结合的方法,提取所述目标区域的冻
土灾害类型及空间分布信息。

优选地,根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所述
冻土灾害类型条件的冻土灾害信息的步骤包括:

采用波段合成的方法进行提取。

本发明还提供了一种基于卫星遥感影像的冻土灾害信息提取装置,该装置包括:

数据获取模块,用于获取不同时相的目标区域的卫星遥感影像数据;

数据处理模块,用于对所述卫星遥感影像数据进行预处理,以完成全色波段和多
光谱波段图像的融合;

冻土灾害类型分类模块,用于基于冻土区域的基础资料、解译要素和解译标志,提
取冻土灾害类型;

信息提取模块,用于根据所述解译标志,从经过预处理的卫星遥感影像数据中提
取符合所述冻土灾害类型条件的冻土灾害信息。

优选地,所述数据处理模块对所述卫星遥感影像数据进行预处理的方法包括:

获取所述卫星遥感影像数据中的多光谱高分数据;

对所述卫星遥感影像数据进行辐射定标,将各载荷的通道观测计数值转换为卫星
载荷等效表观辐亮度数据;对多光谱高分数据进行辐射定标的公式为:

Le(ρe)=Gain·DN+Bias

式中,Gain为定标斜率,DN为卫星载荷观测值,Bias为定标截距;

获取与所述多光谱高分数据对应的波谱响应函数,对经过辐射定标的多光谱高分
数据进行大气校正;

建立有理多项式函数模型,对经过大气校正的多光谱高分数据进行正射校正;在
所述有理多项式函数模型中,采用一阶多项式来表示由光学投影引起的畸变误差模型,采
用二阶多项式趋近由地球曲率、投影折射、?#20302;?#20542;斜等因素引起的畸变,采用三阶多项式来
模拟高阶部分的其他畸变,及采用正解和反解变换进行所述正射校正;

根据所述有理多项式函数模型中系数填充多项式的系数,及输入未校正的影像得
到待输出影像的地理?#27573;А?#22320;面分辨率大小以及?#24459;?#21464;换参数,获取待输出影像上每个像
素对应的地理坐标,将所述地理坐标变换为原始影像上的行列号,根据预设插值算法获取
所述待输出影像上的对应的像素值,将对应的像素值写入到所述待输出影像中;

对所述卫星遥感影像数据中的全色波段数据进行辐射定标和正射校正,将处理后
的多光谱高分数据和全色波段数据融合,得到所述目标区域的影像图。

优选地,所述冻土灾害类型分类模块基于基础资料、解译要素和解译标志,提取冻
土灾害类型的方法包括:

获取所述目标区域的水文地质数据、工程地质数据、环境地质数据、遥感数据;

根据所述解译要素及解译标志获取冻土灾害类型,其中,所述解译要素包括地物
形状、地物大小、地物粗糙?#21462;?#22320;物反射差、地物纹理、地物色调;所述解译标志包括但不限
于所述目标区域的地?#30149;?#20923;土现象、冻土灾害;构建所述冻土灾害类型包括但不限于冰锥、
冰幔、湿地、草甸、冻胀丘、疑似冻胀丘、冻结湖塘、湿地、工程湿地、草甸其中的一种或多种。

优选地,所述信息提取模块根据所述解译标志,从经过预处理的卫星遥感影像数
据中提取符合所述冻土灾害类型条件的冻土灾害信息的方法包括:

通过计算机自动分类与人机交互目视解译相结合的方法,提取所述目标区域的冻
土灾害类型及空间分布信息。

优选地,所述信息提取模块根据所述解译标志,从经过预处理的卫星遥感影像数
据中提取符合所述冻土灾害类型条件的冻土灾害信息的方法包括:

采用波段合成的方法进行提取。

在本申请实施例中,利用卫星遥感影像数据,结合基于冻土区域的冻土灾害类型
条件,使用计算机自动分类和人机交互解译的方法,可以从卫星遥感影像数据提取出符合
冻土灾害类型条件的信息。从而可以构建相关区域的冻土灾害信息数据库,分析不良冻土
地质现象对道路等其他工程潜在的威胁及由此可能导致的工程病害,为对降低工程病害的
发生率和自然灾害对工程造成的破坏提供科学指导,为未来区内新建重大冻土工程的设计
和施工提供科学依据,同时保护工程沿线生态环境。

为使本发明的上述目的、特征和优点能更明显?#38181;?#19979;文特举较佳实施例,并配合
所附附图,作详细说明如下。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附
图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对
?#27573;?#30340;限定,对于本领域普通技术人员来讲,在不?#20923;?#21019;造性劳动的前提下,还可以根据这
些附图获得其他相关的附图。

图1为本发明实施方式提供的一种冻土灾害信息提取方法的流程示意图。

图2为本发明实施方式提供的一种冻土灾害信息提取方法?#32961;?#39588;S102的子步骤的
流程示意图。

图3为本发明实施方式提供的一种冻土灾害信息提取方法?#32961;?#39588;S103的子步骤的
流程示意图。

图4为本发明实施方式提供的一种冻土灾害信息提取装置的功能模块示意图。

图标:200-冻土灾害信息提取装置;201-数据获取模块;202-数据处理模块;203-
冻土灾害类型分类模块;204-信息提取模块。

具体实施方式

下面将结合本发明实施例中附图,对本发明实施例中的技术方?#38468;星?#26970;、完整
地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在
此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因
此,以下对在附图中提供的本发明的实施例的详?#35813;?#36848;并非旨在限制要求保护的本发明的
?#27573;В?#32780;是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做
出创造性劳动的前提?#28388;?#33719;得的所有其他实施例,?#38469;?#20110;本发明保护的?#27573;А?br />

应注意到?#21512;?#20284;的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一
个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的
描述中,术语“第一”、“第二”等仅用于区?#32622;?#36848;,而不能理解为指示或暗示相?#28798;?#35201;性。

本申请实施例提供了一种基于卫星遥感影像的冻土灾害信息提取方法,如图1所
示,该方法包括以下步骤。

步骤S101,获取不同时相的目标区域的卫星遥感影像数据。

冻土区域由于其特殊性,对社会生产生活都具有很重要的研究意义。在我国西藏
冻土区内就需要对冻土灾害进行有效的观测,在西藏冻土区的人口聚集区及重要交通?#19978;?br />开展冻土灾害调查,调查其类型、规模、危害程度及成因,总结区域冻土灾害空间分?#32487;?#24449;。
?#28798;?#22823;冻土灾害点开展定期观测,掌握其动态变化特征。主要针对冻土区地基土体冻胀和
融沉的灾害特征,通过公路、建筑物基础冻胀和融沉防治技术的现场观测资料,分析冻土区
地基冻胀和融沉的防治技术效果及其对地基下部冻土变化的影响。按照相关技术要求开展
综合研究,区划西藏多年冻土分?#32487;?#24449;,总结多年冻土区主要城镇和重要交通?#19978;?#30340;冻土
灾害类型、空间分布、危害程度及其动态变化特征。

利用卫星遥感影像可以更高效的实现对冻土灾害的类型和分布信息的调查。在本
申请实施例中,可以采用我国的高分一号遥感卫星提供的遥感数据进行冻土灾害信息的分
析。在进行冻土灾害信息的提取过程中,需要?#28982;?#21462;目标区域的相关数据,并且由于冻土区
域内的各种冻土灾害会因环境的变化而出现变化,因此需要获取不同时相的相关数据。

目标区域的确定可以根据实现需要进行,在本申请实施例中,可以选取西藏?#28798;?br />区的公路两侧的相关卫星遥感影像数据,影像区域可以包含道路两侧300米以内的区域,即
以功率为中线的宽度的为600米的区域。以301省道、219国道、109国道为例,这一目标区域
的总面积为6274平方公里。

通过获取目标区域的不同时相的相关卫星遥感影像数据,为后续的冻土区域的冻
土灾害的分析提供数据基础。

步骤S102,对所述卫星遥感影像数据进行预处理,以完成全色波段和多光谱波段
图像的融合。

在获取到相关卫星遥感影像数据后,需要先进行数据的预处理。具体的,如图2所
示,预处理的步骤可以包括以下子步骤。

步骤S1021,获取所述卫星遥感影像数据中的多光谱高分数据。

从目标区域的相关卫星遥感影像数据中获取多光谱高光数据,例如在使用高分一
号提供的影像数据时,就可以提取高分一号的230景。

步骤S1022,对所述卫星遥感影像数据进行辐射定标,将各载荷的通道观测计数值
转换为卫星载荷等效表观辐亮度数据;其中,对多光谱高分数据进行辐射定标的公式为:

Le(ρe)=Gain·DN+Bias

式中,Gain为定标斜率,DN为卫星载荷观测值,Bias为定标截距。

对卫星遥感影像数据进行辐射定标是将传感器记录的无量纲的DN值转换成具有
?#23548;?#29289;理意义的大气顶层辐射亮度或反射率。辐射定标的原理是建立数?#33267;?#21270;值与对应视
场中辐射亮度值之间的定量关系,以消除传感器本身产生的误差。

辐射定标的系数可以根据下表进行。



步骤1023,获取与所述多光谱高分数据对应的波谱响应函数,对经过辐射定标的
多光谱高分数据进行大气校正。

进行大气校正可以借助ENVI(The Environment for Visualizing Images,遥感
图像处理)工具进行,可以快速、便捷、准确地对卫星遥感影像数据进行处理,通过大气校正
可以校正由大气气溶胶等引起的散射和由于漫反射引起的邻域效应,消除大气和光照等因
素对地物反射的影响,获得地物反射率和辐射率、地表温度等真实物理模型参数。

步骤S1024,建立有理多项式函数模型,对经过大气校正的多光谱高分数据进行正
射校正。

在所述有理多项式函数模型中,采用一阶多项式来表示由光学投影引起的畸变误
差模型,采用二阶多项式趋近由地球曲率、投影折射、?#20302;?#20542;斜等因素引起的畸变,采用三
阶多项式来模拟高阶部分的其他畸变,及采用正解和反解变换进行所述正射校正。

通过进行正射校正可以改正因地形起伏和传感器误差而引起的像点位移的影像。
在地?#30772;?#20239;较大的地方,使用正射校正来解决地?#30772;?#20239;较大引起的误差。

步骤S1025,根据所述有理多项式函数模型中系数填充多项式的系数,及输入未校
正的影像得到待输出影像的地理?#27573;А?#22320;面分辨率大小以及?#24459;?#21464;换参数,获取待输出影
像上每个像素对应的地理坐标,将所述地理坐标变换为原始影像上的行列号,根据预设插
值算法获取所述待输出影像上的对应的像素值,将对应的像素值写入到所述待输出影像
中。

步骤S1026,对所述卫星遥感影像数据中的全色波段数据进行辐射定标和正射校
正,将处理后的多光谱高分数据和全色波段数据融合,得到所述目标区域的影像图。

通过分别对多光谱高分数据和全色波段数据的处理,将处理后的数据进行融合,
即可得到目标区域的影像图。

步骤S103,基于冻土区域的基础资料、解译要素和解译标志,构建冻土灾害分类系
统和解译标志。

如图3所示,具体的可以包括如下子步骤。

步骤S1031,获取所述目标区域的水文地质数据、工程地质数据、环境地质数据、遥
感数据。

步骤S1032,根据所述解译要素及解译标志获取冻土灾害类型.

在分析已有水文地质、工程地质、环境地质、遥感资料,初步掌握工作区它们的基
本特征和遥感影像特征的基础上,根据遥感影像的六大解译要素(地物的形状、大小、色调、
粗糙?#21462;?#21453;射差、纹形?#21450;?#31561;特征),以及地?#30149;?#20923;土现象、冻土灾害等系列解译标志,?#20808;非?br />地建立本次遥感解译分类体系及解译标志,采用不同时相遥感图像的对比分析,进一步确
定和完善解译标志。

步骤S104,根据所述解译标志,从经过预处理的卫星遥感影像数据中提取符合所
述冻土灾害类型条件的冻土灾害信息。

根据上述已经建立的分类?#20302;?#21644;解译标志,即可对卫星遥感影像数据进行分析比
对,将影像数据中的冻土灾害信息提取出来,将不同类型的冻土灾害信息进行标记汇总。

在本申请实施例中,基于高分一号系列数据,通过计算机自动分类与人机交互目
视解译相结合的方法或者通过波段合成的方法,提取西藏?#28798;?#21306;冻土灾害类型及空间分布
信息。

本申请实施例还提供了一种冻土灾害信息提取装置200,如图4所示,包括:数据获
取模块201、数据处理模块202、冻土灾害类型分类模块203和信息提取模块204。

数据获取模块201,用于获取不同时相的目标区域的卫星遥感影像数据。

数据处理模块202,用于对所述卫星遥感影像数据进行预处理,以完成全色波段和
多光谱波段图像的融合。对所述卫星遥感影像数据进行预处理的方法可参见上述方法步骤
的描述,这里不再?#29976;觥?br />

冻土灾害类型分类模块203,用于基于冻土区域的基础资料、解译要素和解译标
志,提取冻土灾害类型。

信息提取模块204,用于根据所述解译标志,从经过预处理的卫星遥感影像数据中
提取符合所述冻土灾害类型条件的冻土灾害信息。各模块工作的方法可参见上述方法步骤
的描述,这里不再?#29976;觥?br />

综上所述,在本申请实施例中,利用卫星遥感影像数据,结合基于冻土区域的冻土
灾害类型条件,使用计算机自动分类和人机交互解译的方法,可以从卫星遥感影像数据提
取出符合冻土灾害类型条件的信息。从而可以构建相关区域的冻土灾害信息数据库,分析
不良冻土地质现象对道路等其他工程潜在的威胁及由此可能导致的工程病害,为对降低工
程病害的发生率和自然灾害对工程造成的破坏提供科学指导,为未来区内新建重大冻土工
程的设计和施工提供科学依据,同时保护工程沿线生态环境。

在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过
其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图
显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体?#23548;?#26500;、
功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一
部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执
行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于
附图中所标注的顺序发生。例如,两个连续的方框?#23548;?#19978;可以基本并行地执行,它们有?#24065;?br />可以按相反的顺序执行,这?#28010;?#28041;及的功能而定。也要注意的是,框图和/或流程图中的每
个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基
于硬件的?#20302;忱词?#29616;,或者可以用专用硬件与计算机指令的组合?#35789;?#29616;。

另外,在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部
分,也可以是各个模块单?#26469;?#22312;,也可以两个或两个以上模块集成形成一个独立的部分。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技
术人员?#27492;擔?#26412;发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修
改、等同替换、改进等,均应包含在本发明的保护?#27573;?#20043;内。应注意到?#21512;?#20284;的标号和字母在
下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需
要对其进行进一步定义和解释。

以上所述,仅为本发明的具体实施方式,但本发明的保护?#27573;?#24182;不局限于此,任何
熟悉本技术领域的技术人员在本发明揭露的技术?#27573;?#20869;,可轻易想到变化或替换,?#21152;?#28085;
盖在本发明的保护?#27573;?#20043;内。因此,本发明的保护?#27573;?#24212;所述以权利要求的保护?#27573;?#20026;准。

关于本文
本文标题:基于卫星遥感影像的冻土灾害信息提取方法及装置.pdf
链接地址:http://www.pqiex.tw/p-6079593.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 棋牌游戏正版排行 股票融资 配资 彩票开奖结果查询 大型正规棋牌平台 天天中彩票 在极速快3 山东群英会最新开奖号走势图 北京pk10从未败过的公式 北京赛车pk10计划表 波克棋牌旧版下载