平码五不中公式规律
  • / 15
  • 下载费用:30 金币  

用于叠加的笔迹的识别技术的系统和方法.pdf

关 键 词:
用于 叠加 笔迹 识别 技术 系统 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201580030321.9

申请日:

2015.03.30

公开号:

CN106663189A

公开日:

2017.05.10

当前法律状态:

实审

有效性:

审中

法?#19978;?#24773;: 实质审查的生效IPC(主分类):G06K 9/00申请日:20150330|||公开
IPC分类号: G06K9/00 主分类号: G06K9/00
申请人: 迈思慧公司
发明人: 若尔特·维默尔; 弗雷迪·佩罗; 皮埃尔-米凯尔·拉利康
地址: 法国南特市
优?#28909;ǎ?/td> 2014.04.04 US 14/245,601
专利代理机构: 中科专利商标代理有限责任公司 11021 代理人: 唐文静
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201580030321.9

授权公告号:

|||

法律状态公告日:

2017.06.06|||2017.05.10

法律状态类型:

实质审查的生效|||公开

摘要

一种能够识别用户的自然叠加的在字符之间无任何显式分隔的笔迹的系统和方法。该系统和方法能够处理单笔画和多笔画字符。它也可以处理草书笔迹。此外,该方法和系统能够通过使用特定的用户输入手势或通过基于语言特性和属性检测单词边界来确定输入单词的边界。该系统和方法通过分段、字符识别和语言建模的过程来分析笔迹输入。这三个过程通过使用动态规划同时发生。

权利要求书

1.一种计算机程序产品,包括内有计算机可读程序代码的计算机可用介?#21097;?#25152;述计算
机可读程序代码适于被执行以实现用于提供针对叠加的输入笔画的笔迹识别的方法,所述
方法包括:
基于至少一个输入笔画创建分段?#36857;?#20854;中所述分段?#21152;?#19982;字符假设相对应的节点组
成;
基于样式分类器向所述分段图的每个节点指派识别分数;
基于所述识别分数和语言模型生成所述输入笔画的语义;以及
基于?#36816;?#36848;分段图、所述识别分数和所述语言模型的同时分析来提供输出。
2.根据权利要求1所述的计算机程序产品,其中,?#36816;?#36848;输入笔画进?#24615;?#22788;理,其中所
述预处理至少包括?#36816;?#36848;输入笔画的标准化和?#20132;?br />
3.根据权利要求2所述的计算机程序产品,其中,所述分段图基于已经被分成构成分段
的连续输入笔画。
4.根据权利要求2所述的计算机程序产品,其中,识别分数的指派包括特征提取阶段和
由神经网络对提取的特征的分类。
5.根据权利要求4所述的计算机程序产品,其中所述特征提取阶段包括至少一个动态
特征和至少一个静态特征。
6.根据权利要求4所述的计算机程序产品,其中所述神经网络是多层感知器。
7.一种用于提供针对叠加的输入笔画的笔迹识别的方法,所述方法包括:
基于至少一个输入笔画创建分段?#36857;?#20854;中所述分段?#21152;?#19982;字符假设相对应的节点组
成;
基于样式分类器向所述分段图的每个节点指派识别分数;
基于所述识别分数和语言模型生成所述输入笔画的语义;以及
基于?#36816;?#36848;分段图、所述识别分数和所述语言模型的同时分析来提供输出。
8.根据权利要求7所述的方法,其中,?#36816;?#36848;输入笔画进?#24615;?#22788;理,其中所述预处理至
少包括?#36816;?#36848;输入笔画的标准化和?#20132;?br />
9.根据权利要求8所述的方法,其中,所述分段图基于已经被分成构成分段的连续输入
笔画。
10.根据权利要求8所述的方法,其中,识别分数的指派包括特征提取阶段和由神经网
络对提取的特征的分类。
11.根据权利要求10所述的方法,其中所述特征提取阶段包括至少一个动态特征和至
少一个静态特征。
12.根据权利要求10所述的方法,其中所述神经网络是多层感知器。
13.一种计算机程序产品,包括内有计算机可读程序代码的计算机可用介?#21097;?#25152;述计算
机可读程序代码适于被执行以实现用于提供针对叠加的笔画输入的笔迹识别的方法,所述
方法包括:
?#36816;?#36848;输入笔画进?#24615;?#22788;理,所述预处理至少包括?#36816;?#36848;输入笔画的标准化和?#20132;?br />基于至少一个输入笔画创建分段?#36857;?#20854;中所述分段?#21152;?#19982;字符假设相对应的节点组
成;
基于样式分类器向所述分段图的每个节点指派识别分数;
基于所述识别分数和语言模型生成所述输入笔画的语义;以及
基于?#36816;?#36848;分段图、所述识别分数和所述语言模型的同时分析来提供输出。
14.根据权利要求13所述的计算机程序产品,其中,所述分段图基于已经被分成构成分
段的连续输入笔画。
15.根据权利要求13所述的计算机程序产品,其中,识别分数的指派包括特征提取阶段
和由神经网络对提取的特征的分类。
16.根据权利要求15所述的计算机程序产品,其中所述特征提取阶段包括至少一个动
态特征和至少一个静态特征。
17.根据权利要求15所述的计算机程序产品,其中所述神经网络是多层感知器。

说明书

用于叠加的笔迹的识别技术的系统和方法

相关申请交叉引用

本申请要求于2014年4月4日提交的美国专利申请No.14/245,601的优?#28909;ǎ?#22240;此
以引用方式将其全文并入本文并作为本文的一部分。

技术领域

本发明大体上涉及能够识别各种字符的用户输入笔迹的计算设备界面的领域。

背景技术

计算设备对于日常生活持续变得更加无处不在。计算设备采用台式计算机、膝上
型计算机、平板PC、电子书阅读器、移动电话、智能电话、可穿戴计算机、全球定位系统(GPS)
单元、企业数?#31181;?#29702;(EDA)、个人数?#31181;?#29702;(PDA)、游戏机等等形式。此外,计算设备被集成到
汽车、卡车、农场设备、制造设备、建筑环境控制(例如,照明,HVAC)以及家用和商用设备中。

计算设备通常包括至少一个处理元件(例如中央处理单元(CPU))、某一形式的存
储器以及输入和输出设备。各种计算设备及它们的后续使用需要各种输入设备。一个这样
的输入设备是例如触摸屏或触摸板之类的触敏表面,其中通过用户的?#31181;?#25110;如笔或触控笔
之类的工具与触敏表面之间的接触来接收用户输入。另一输入设备是感测用户在输入表面
上方做出的手势的输入表面。这些输入方法中的任一种通常可用于绘制或输入文本。当用
户输入是文本时,计算设备必须使用在线笔迹识别系统或方法来解释用户的笔迹。

通常,在线笔迹识别系统或方法监测笔画的开?#36857;?#20363;如用户与触敏表面接触(下
笔)的时间;笔画的终止,例如用户停止接触触敏表面(抬笔)的时间;以及用户在笔画的开
始和终止之间用他或她的?#31181;?#25110;笔做出的任何移动(手势或笔画)。

在线笔迹识别系统或方法通常包括预处理阶段、分段阶段、识别阶段和解释阶段。
通常,预处理阶段包括丢弃不相关的输入数据以及对相关数据进行标准化、采样和去噪。分
段阶段指定不同方式来将输入数据分解为各个字符和单词。识别通常包括特征提取阶段和
分类阶段,该特征提取阶段表征不同的输入分段,而分类阶段将分段与可能的字符候选相
关联。最后,解释阶段通常包括识别与字符候选相关联的字符和/或单词。在实践中,在线笔
迹识别系统或方法可以包括这些阶段以及附加阶段。此外,在线笔迹识别系统或方法可能
不清楚地划定每个阶段。

在线笔迹识别系统或方法可以是单笔画的或多笔画的。单笔画识别针对字母表的
每个字符使用单笔画简写(例如,Palm公司的的涂鸦(Graffiti))。这些系统或方法具有较
少的输入错误,但需要用户记住整个字母表的新笔画样式。多笔画识别可以识别自然笔迹,
并且在使用具有包括不易被缩减为单个笔画的字符(例如日语或汉语字符)的语言的在线
笔迹识别系统时,通常是必要的。

计算设备的类型还可以决定所使用的笔迹识别系统或方法的类型。例如,如果输
入表面足够大(例如平板计算机),则用户可以在输入表面上或其上方的任何地方输入文本
或数据,就像用户在一张纸上书写一样。随着设备变得更小,已经开发了不同的系统或方
法,例如多框或单框。多框系统或方法将输入表面划分为多个区域(例如三个框),其中用户
逐个在每个框中输入一个字符。这些是有利的,原因在于字符分段变为最小限?#28982;?#26159;不必
要的。它们还?#24066;?#22810;笔画字符,其可利用孤立字符识别技术来分析。

对于更小的设备,输入表面的大小可能不够分为多个框,所以表面基本上是单框
书写界面。在该实例中,一次只能书写一个字符。虽然单框界面自身适用于单笔画识别系
统,但某些语言(例如日语或汉语)具有不易被缩减为单笔画简写的多笔画字符。此外,不考
虑语言,大多数自然笔迹包含多笔画字符,。

使用多笔画系统或方法的单框界面产生附加的问题,包括确定字符的开始和结束
以及清楚地显示输入字符的图像。一种确定字符的开始和结束的方法需要用户在每个字符
之间显式地暂停。然而,这不是最佳的,因为它减慢了用户输入数据的速度。在其中用户能
够连续输入字符且没?#24615;?#20572;的单框系统或方法中,输入字符将被覆盖或彼此叠加。这被称
为叠加笔迹、覆盖笔迹或“顶部写入”。

本申请的在线叠加笔迹识别系统和方法通过同时地而不是顺序地执行分段、识别
和解释为用户输入笔迹识别提供改进的结果。本系统和方法在相同级别执行这些处理,而
不是对这些步骤应用分层结构。通过使分段、识别和解释协同发生,本系统基于用户输入向
用户提供最佳可能的字符、单词和句子候选。

发明内容

下面本文中所描述的本发明的示例提供了用于在线叠加笔迹识别的方法、系统和
软件。这些方法、系统和软件?#24066;?#29992;户使用他或她的自然笔迹将字符输入到计算设备中,在
字符之间不需要任何显式的分隔。本笔迹识别系统和方法包括与具有输入表面形式的输入
设备连接的计算设备。用户能够通过使用他或她的?#31181;?#25110;工具(例如触控笔或笔)向输入表
面施加压力或在输入表面上方做手势来提供输入。本系统和方法监测输入笔画。在对输入
笔画进?#24615;?#22788;理之后,分段专家、识别专家和语言专家同时对输入数据进行分析。这三个专
家通过动态规划协同工作,以处理输入笔画,并在字符、单词和句子级别生成候选。

所公开的系统和方法的目的是提供一种能够解释用户的自然笔迹风格的在线笔
迹识别系统和方法。这可以通过提供以下系统和方法?#35789;迪鄭?#22312;所述系统和方法中:分段专
家、识别专家和语言专家通过动态规划都协同工作,其中分段专?#19968;?#20110;用户输入和来自识
别专家和语言专家的输入创建分段?#36857;?#35782;别专家将字符候选的列表与所述分段图的每个节
点的识别分数相关联;以及语言专家生成分段图中的不同路径的语义。

所公开的系统和方法的另一目在于:提供一种能够识别叠加笔迹的在线笔迹识别
系统和方法,在叠加笔迹中书写的字符一个在另一个之上,而且在连续字母之间没有任何
显式的分隔。这可以通过提供以下系统和方法?#35789;迪鄭?#22312;该系统和方法中,分段专家、识别
专家和语言专家通过动态规划协同工作,以提供用于字符、单词和句子输入的最可能的候
选。

所公开的系统和方法的另一目的在于:提供一种能够识别多笔画字符的在线笔迹
识别系统和方法。这可以通过提供以下系统和方法?#35789;迪鄭?#22312;该系统和方法中,分段专家创
建分段?#36857;?#20854;基于用户输入和动态规划,该动态规划涉及分析分段图的识别专家和语言专
家。

所公开的系统和方法的另一目的在于:提供一种能够识别草书笔迹的在线笔迹识
别系统和方法,在草书笔迹中所附字符是彼此重叠书写的。这通过提供以下系统和方法来
实现,在该系统和方法中,分段专家检测定义用于将笔画分解为其构成分段的位置的特定
点。

所公开的系统和方法的另一目的在于:提供一种基于特定输入笔画或通过自动检
测单词边界来提供单词边界的在线笔迹识别系统和方法。这通过提供以下系统和方法?#35789;?br />现,该系统和方法包括分段专家、识别专家和语言专家,其?#35745;?#26395;特定输入笔画以将输入字
符分解为单词;或三个专家通过整体分析所有输入字符而自动添加单词间断。

结合附?#36857;?#26681;据以下对本系统和方法的示例的详?#35813;?#36848;,将更全面地理解本系统
和方法。

附图说明

图1示出了根据本系统的示例的计算设备的框图。

图2示出了根据本系统的示例的用于在线笔迹识别的系统的框图。

图3A示出了根据本系统的示例的可能的用户输入的图示说明。

图3B示出了根据本系统的示例的分段图的示意图。

图4示出了根据本系统的示例的作为草书用户输入的可能用户输入的示意图。

图5示出了根据本系统的示例的对草书用户输入的分段的示意图说明。

图6示出了根据本系统的示例的识别专家的示意图说明。

图7示出了根据本发明示例的语言自动机的示意图说明。

具体实施方式

在以下详?#35813;?#36848;中,以示例的方式阐述了大量的特定?#38468;冢?#20197;提供对相关教导的
完全理解。然而,本领域技术人员应当明白,可以在没有这些具体?#38468;?#30340;情况下实践这些教
导。在其他实例中,已经在相?#22791;?#30340;层面描述了熟知的方法、过程、组件和/或电路,而未描
述?#38468;冢?#20197;避免不必要地使本教导的方案模糊不清。

本文描述的各种技术一般涉及在线笔迹识别,并更具体地涉及用于在各种计算设
备上的叠加笔迹识别的系统和方法。本文描述的系统和方法可以用于通过分段、识别和解
释的同时处理来识别用户的自然笔迹输入,以提供最佳可能的字符、单词和句子的候选。

图1示出了计算设备100的框图。该计算设备可以是台式计算机、膝上型计算机、平
板PC、电子书阅读器、移动电话、智能电话、可穿戴计算机、数字手表、全球定位系统(GPS)单
元、企业数?#31181;?#29702;(EDA)、个人数?#31181;?#29702;(PDA)或游戏机。设备100包括至少一个处理元件、某
种形式的存储器和输入和/或输出(I/O)设备。这些组件通过例如连接器、线路、总线、电缆、
缓冲器、电磁链路、网络、调制解调器、换能器、IR端口、天线的输入和输出装置或本领域普
通技术人?#24065;?#30693;的其它装置彼此通信。

设备100包括至少一个输入表面104。输入表面104可以采用例如电阻、表面声波、
电容、红外网格、红外丙烯酸投影、光学?#19978;瘛?#33394;散信号技术、声脉冲识别或本领域普通技术
人?#24065;?#30693;的任意其他适当技术。输入表面104可以由明确识别其边界的永久边界或视频生
成的边界界定。

除输入表面104之外,设备100可以包括经由?#38236;?#25509;口通信地耦合的一个或多个附
加I/O设备(或外围设备)。?#38236;?#25509;口可以具有用于使能通信的附加单元,例如控制器、缓冲
器(高速缓存)、驱动器、中继器和接收机,为?#24605;?#21333;而将其省略,但本领域技术人?#31508;?#24050;知
的。此外,?#38236;?#25509;口可以包括地址、控制和/或数据连接,以使能其他计算机组件之间的适当
通信。

一个这种I/O设备可以是用于从计算设备输出数据(例如图像、文本和视频)的至
少一个显示器102。显示器102可以使用LCD、等离子体、CRT或本领域普通技术人?#24065;?#30693;的任
意其他适当的技术。显示器102中的至少一些可以与输入表面104位于同一位置。其他附加
I/O设备可以包括例如键盘、鼠标、扫描仪、麦克风、触摸板、条形码读取器、激光读取器、射
频设备读取器的输入设备,或如本领域普通技术人?#24065;?#30693;的任意其他适当的技术。此外,I/
O设备还可以包括输出设备,例如打印机、条形码打印机或本领域普通技术人?#24065;?#30693;的任意
其他适当的技术。最后,I/O设备还可以包括传送输入和输出的设备,例如调制器/解调器
(调制解调器;用于访问另一设备、系统或网络)、射频(RF)或其他收发器、电话接口、桥接
器、路由器或本领域普通技术人?#24065;?#30693;的任意其他适当的技术。

设备100还包括处理器106,其是用于执行软件(尤其是在存储器108中存储的软
件)的硬件设备。处理器可以是任意定制的或市售通用的处理器、中央处理单元(CPU)、基于
半导体的微处理器(微芯片或芯片组形式)、宏处理器、微控制器、数字信号处理器(DSP)、应
用专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、离散门或晶体
管逻辑、离散硬件组件、状态机或被设计用于执行本领域普通技术人?#24065;?#30693;的软件指令其
任意组合。合适的市售微处理器的实例如下:来自Hewlett-Packard公司的PA-RISC系列微
处理器、来自Intel公司的80x86或Pentium系列微处理器、来自IBM的PowerPC微处理器、来
自Sun Microsystems公司的Sparc微处理器、来自摩?#26032;?#25289;公司的68xxx系列微处理器、DSP
微处理器或ARM微处理器。

存储器108可以包括?#36164;?#24615;存储器元件(例如,随机存取存储器(RAM,例如DRAM、
SRAM、SDRAM等))和?#19988;资?#24615;存储器元件(例如,ROM、EPROM、闪存PROM、EEPROM、硬盘驱动器、
磁盘或光带、存储器寄存器、CD-ROM、WORM、DVD、廉价磁盘冗余阵列(“RAID”)、另一直接存取
存储设备(“DASD”)等)。此外,存储器108可以包括电子、磁、光学和/或其他类型的存储介
质。存储器108可以具有分布式架构,其中各种组件彼此远离,但也可以由处理器106访问。
存储器108与处理器106耦合,因此处理器106可以从存储器108读取信息和向存储器108写
入信息。在备选方案中,存储器108可以与处理器106集成在一起。在另一示例中,处理器106
和存储器108可以均驻留在单个ASIC中或其他集成电?#20998;小?br />

存储器108中的软件包括在线笔迹计算机程序,其可以包括一个或多个单独的程
序,每个程序包括用于实现逻辑功能的可执行指令的有序列表。操作系统110控制在线笔迹
计算机程序的执行。操作系统110可以是专有操作系统或市售的操作系统,例如
MAC和IPHONELINUX、ANDROID?#21462;?#24212;当理解,在不脱离本文公开
的系统和方法的精神的情况下,也可以使用其他操作系统。

存储器108可以包括其他应用程序112,其与如本文所描述的笔迹识别相关,或者
是完全不同的功能,或者与这两者相关。应用112包括在制造时向设备100提供的程序,并且
还可以包括在制造之后下载到设备100中的程序。一些示例包括文本编辑器、电话拨号器、
联系人目录、?#35789;?#28040;息设施、电子邮件程序、文字处理程序、网络浏览器、照相机?#21462;?br />

具有支持和兼容能力的在线笔迹识别计算机程序可以是源程序、可执行程序(目
标代码)、脚本或包括要执行的一组指令的任意其他实体。?#31508;?#28304;程序时,该程序需要经由
编译器、汇编器、解释器等(其可以包括在也可以不包括在存储器内)来翻译,以便结合操作
系统正确地操作。此外,具有支持和兼容能力的在线笔迹识别计算机程序可以被写为(a)面
向对象的编程语言,其具有数据和方法的类,或(b)过程编程语言,其具有例程、子例程和/
或函数,例如但不限于C、C++、Pascal、Basic、Fortran、Cobol、Perl、Java和Ada。

当处理器106检测到经由输入表面104的用户输入笔画时,启动系统。用户可以用
?#31181;?#25110;某种工具(例如笔或触控笔)输入笔画。笔画至少由笔画开始位置、笔画结束位置和
用户连接笔画的开始位置和结束位置的路径来刻画。因为不同的用户可能自然地写下具有
微小变化的相同字母,本系统适应于可以输入每个字母的各种方式。

图2是根据本系统的示例的用于在线笔迹识别的系统的示意图。一旦以至少一个
输入笔画启动,系统就对笔画进?#24615;?#22788;理114。预处理114可以包括?#21644;?#36807;应用尺寸标准化来
使连接笔画的开始位置和结束位置的路径标准化,和/或诸如B样条近似之类的用以对输入
进行?#20132;?#30340;方法。输入笔画然后被传递给三个专家(分段专家116、识别专家118和语言专家
120),其通过动态规划来协同工作,以在字符、单词和句子级别生成输出候选124。

分段专家116定义将输入笔画分割成单词和各个字符假设的不同方式。为形成字
符假设,分段专家116对原始输入的连续笔画进行分组。这得到了分段?#36857;?#22312;分段图中每个
节点与至少一个字符假设相对应,并且其中字符之间的邻接约束由节点连接来处理。如果
相应的假设没有共同笔画,但是其笔画在原始输入中是连续的,则认为节点是相邻的。图3A
示出了根据本系统的示例的单词BEAN的可能的用户输入。具体地,该图显示?#21496;?#26377;多笔画
字符的叠加笔迹的示例。图3B示出了根据本系统的示例创建的图3A输入的可能的分段图。

叠加笔迹识别系统和方法还必须确定一个单?#24335;?#26463;且另一个单词开始的位置。本
系统和方法能够具有多个取得单词边界的实施例。在一个实施例中,需要用户在每个单词
之后插入特定手势。在该实施例中,特定手势被输出为空格字符。该实施例给分段过程带来
更多的鲁棒性,因为它减少?#31169;?#36755;入笔画分成单词和各个字符假设的不同方式。然而,该实
施例迫使用户添加指示每个单词的结束的特定手势,这可能被一些用户忘记。

一种备选实施例不需要分隔单词的特定手势。相反,在线笔迹识别计算机程序在
识别专家118和/或语言专家120的帮助下自动检测单词边界,这将在下面详?#35813;?#36848;。例如,
语言专家120使用语言信息130来基于词汇知识和对给定语言中的连续单词的序列的可能
性进行建模的技术(例如N元模型、语法解析、语义分析等)等来取得单词边界。

例如,在基于从英语提取的语言信息130的实施例中,用户可以用叠加笔迹来输入
字符序列“whattimeisit?”。该备选实施例将输出单词分段“what time is it??#20445;?#22522;于语言
信息130对输入笔画做出全局意义,并且取得单词边界。该实施例具?#24615;市?#29992;户输入单词序
列而不需要在每个单词之间插入特定手势的优点。

在另一实施例中,可以对前述两种方法进行组合。在那种情况下,用户可以在每个
单词之后插入特定手势,以获得针对检测单词边界的更强的鲁棒性。但是每当用户忽略插
入手势时,笔迹识别系统能够在识别专家118和/或语言专家120的帮助下检测单词边界。

在一个示例中,如图3A和图3B中所看到的,分段专?#20063;?#38480;于手印笔迹输入,在手印
笔迹输入中每个单个字符通过抬笔与其相邻字符相分离。本系统的分段专家116还能够处
理其中所附字母彼此叠加书写的草书笔迹。图4示出了单词“be”和“an”的草书用户输入。当
解释草书用户输入时,分段专家116基于对特定点的检测来对每个笔画进行分段,所述特定
点定义用于将笔画分解为其构成分段的位置。图5示出了草书“an”被分解为其构成分段的
示例。将笔画分解为其构成分段的特定点可以由交叉点、笔画路径的斜率的变化等限定。这
些构成分段被用于构造分段图。

识别专家118将字符候选的列表与分段图的每个节点的概率或识别分数相关联。
这些概率或识别分数基于语言识别信息122。语言识别信息定义了所指定的语言下的字母
表的所有不同字符和符号。该信息是语言相关的,并且包括字母表中的一般差异以及识别
书写字母的各种个性风格的能力。例如,个人写“7”的方式可以根据该人来自美国、法国、或
者甚至韩国而完全不同。继续图3A和图3B中给出的示例,图6示出了识别专家118的实施例,
其包括两个阶段。识别专家118的第一阶段,特征提取126,基于动态和静态特征的组合。例
如,可以从输入笔画的轨迹中,并基于输入笔画的诸如位置、方向和曲率之类的信息,提取
动态特征。可以从输入笔画的位图表示中,并可以基于投影和直方?#36857;?#25552;取静态特征。

本实施例的识别专家118的第二阶段是由例如神经网络128之类的样式分类器对
提取的特征的分类。在本实施例中,神经网络可以是简单的多层感知器。神经网络还可以包
括使神经网络能够拒绝与恶劣分段的字符相对应的节点假设的额外类别。识别专家118输
出具有分段图的每个节点的概率或识别分数的字符候选的列表。备选实施例可以使用例如
深度神经网络、卷积神经网络或循环神经网络之类的其他类型的神经网络。更一般地,可以
使用任意类型的样式分类器来解决该识别任务(例如,支持向量机、隐式马尔可夫模型)。

语言专家120针对分段图中的不同路径生成语义。它根据可用的语言信息130检查
由其他专家建议的候选。该语言信息130可以包括词典、常用表达?#21462;?#35821;言专家120旨在?#19994;?br />最佳识别路径。在一个实施例中,语言专家120通过探索例如表示语言信息130的内容的最
终状态自动机(确定性FSA)之类的语言模型来做到这一点。建立图3A、图3B和图6中的示例
上的图7示出?#21496;?#26377;仅包含单词BEAN、BY、CAR、CAT和COW的词典的语言自动机。此外,图7表
示期望用户插入短划线132以定义单词边界的语言专家的实施例。

除词典约束之外,语言专家120可以使用关于单词或单词的给定序列在指定语言
中出现或被特定用户使用的频繁程度的统计信息建模。例如,单词三元语言模型可被用于
评估对分段图的给定路径的解释的语言可能性。

分段专家116、识别专家118和语言专家120通过动态规划协同工作以处理输入笔
画,并且在字符、单词和句子级别生成输出候选124。在一个实施例中,动态规划是基于在分
段图和语言模型二者中搜索最佳路径的束搜索(beam search)技术。在该实例中,最佳路径
是与最?#32479;?#26412;相对应的路径。最?#32479;?#26412;路径可以定义为以下的总和:

在分段图中相应路径中遇到的所有字符候选的成本。可以根据分段图中属于该路
径的每个节点的概率或识别分数来估计这些成本。在一个实施例中,通过应用对数非线性
函数,根据神经网络概?#21097;?#26469;估计成本。

在语言模型的相应路径中遇到的所有单词的成本。可以根据来自语言专家120的N
元语法概率来估计这些成本。在一个实施例中,通过应用对数非线性函数,根据来自语言专
家120的N元语法概率来估计成本。

对于本在线笔迹识别计算机程序的整体训练,可以使用在文?#38745;?#38754;的具有对分类
器(例如,神经网络)128的所有参数和系统的任何元参数的自动学习的全局判别训练方案,
尽管也可以使用其他训练系统和方法。在本在线叠加笔迹识别系统和方法中,通过同时地、
而不是顺序地或分层地执行分段、识别和解释,为用户输入笔迹识别提供了最佳结果。

尽管前面已经描述了被认为是最佳的模式和/或其他示例,但是应当理解,可以在
其中进行各种修?#27169;?#24182;?#20918;?#25991;公开的主题可以用各种形式和示例?#35789;迪鄭?#24182;且它们可被应
用于许多其它应用、组合和环?#25345;校?#26412;文中仅描述了其中的一些。本领域普通技术人员将认
识到,在不脱离本主题的真实精神和?#27573;?#30340;情况下,可以改变或修改所公开的方案。因此,
主题不限于本说明书中的具体?#38468;凇?#23637;示和示例。本申请旨在保护落入本文所公开的有利
构思的真实?#27573;?#20869;的任意和所有的修改和变化。

关于本文
本文标题:用于叠加的笔迹的识别技术的系统和方法.pdf
链接地址:http://www.pqiex.tw/p-6091838.html
关于我们 - 网站声明 - 网?#38236;?#22270; - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 快乐12遗漏 幸运28玩的方法 3d玩法介绍 广州跑摩托车赚钱吗 欢乐斗牛下载 极品飙车内购破解版下载 足球比分直播500 一天稳赚20元的方法 捕鱼来了辅助一炮死 新加坡娱乐视频网