平码五不中公式规律
  • / 16
  • 下载费用:30 金币  

一种化学品泄漏快速预测预警应急响应决策方法.pdf

关 键 ?#21097;?/dt>
一种 化学品 泄漏 快速 预测 预警 应急 响应 决策 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201410136961.5

申请日:

2014.04.04

公开号:

CN103914622A

公开日:

2014.07.09

当前法律状态:

授权

有效性:

有权

法?#19978;?#24773;: 授权|||实质审查的生效IPC(主分类):G06F 19/00申请日:20140404|||公开
IPC分类号: G06F19/00(2011.01)I 主分类号: G06F19/00
申请人: 清华大学
发明人: 赵劲松; 王冰; 陈丙珍
地址: 100084 北京市海淀区100084信箱82分箱清华大学专利办公室
优先权:
专利代理机构: 西安智大知识产权代理事务所 61215 代理人: 贾玉健
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201410136961.5

授权公告号:

103914622B||||||

法律状态公告日:

2017.07.07|||2014.08.06|||2014.07.09

法律状态类型:

授权|||实质审查的生效|||公开

摘要

本发明一种化学品泄漏快速预测预警应急响应决策方法,将扩散模型模拟与神经网络和气体传感器系统相结合,应用于工业园区有害气体泄漏的快速预警及辅助决策,包括:园区风险因素识别,用于识别可能发生的各类泄露事故;数?#30340;?#25311;,?#36816;?#26377;可能发生的事故进行模拟,得到有害气体的影响范围;数据筛选,根据实际的传感器布局提取和重组数?#30340;?#25311;结果中有效部分;神经网络训练,利用筛选后的数据对特定神经网络模型进行训练,以获得针对特定工业园区及周边条件的模型参数,并使用冗余数据参数验证;传感器系统与神经网络模型整合,将模型与传感器DCS结合起来。

权利要求书

权利要求书
1.  一种化学品泄漏快速预测预警应急响应决策方法,包括风险因素识别、情景数?#30340;?#25311;、模拟结果筛选、神经网络训练以及训?#26041;?#26524;与传感器系统集成?#21442;?#20010;阶段,其特征在于:
风险因素识别包括:识别化工园区的风险因素,量化各个风险要素并根据识别的风险要素及其取值范围,合理取值并组合各种可能发生的泄露情景;
情景数?#30340;?#25311;阶段包括:将园区风险因素识别步骤中组成的所有可能发生的泄露情景进行模拟,以获得不同泄露情景下泄露气体的影响范围;
模拟结果筛选包括:
对一种包括4个气体传感器的布局方案?#26800;?#20851;键参数进行优化,利用模拟得到的泄露气体浓度分布进行简单优化,得到最适传感器布局;
根据确定的传感器布局方案,提取在传感器布局可测量风向范围内的虚拟探测数据以及与之匹配的环境敏?#26800;?#27844;漏气体扩散数据,按照神经网络的训练逻辑?#24613;?#35757;练数据和校验数据;
神经网络训练步骤包括:
建立用于函数拟合的前向神经网络,将?#24613;?#22909;的训练数据作为神经网络训练的输入输出,计算网络参数;
将检验数据输入部分输入神经网络,结果部分与神经网络预测结果对比,评估预测精度;
神经网络与传感器和园区控制系统集成步骤:
将各个风?#36213;?#30340;模拟分析以及训?#26041;?#26524;与风?#36213;?#21644;环境敏?#26800;?#30340;地理位置信息以数据库和调用程序的形式结合,并提供与传感器系统的数据接口,实现从事故发生—传感器报警—模型快速预测—辅助决策的工作流程。

2.  根据权利要求1所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述园区风险识别部分由以下步骤组成:
步骤一、利用风险评估识别风险因子及事故情景因素并判定可能发生的各 类泄漏情景的必备要素,包括风险要素和事故情景要素;
步骤二、分别确定各个风险因子以及事故情境因素的取值范围,在各个因素的取值范围内分别以一定步长划分数值序列,其中步长不得超过该因素取值范围的10%,最后将不同的风险因子/事故情景因素的各个取值组合成大量的可能发生的泄露情景,当共有n种风险因素时,各个风险因素有Ni种取值(Ni≥1,整数),则共有种泄露情景。

3.  根据权利要求1所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述情景数?#30340;?#25311;阶段使用的数?#30340;?#22411;包括:高斯及类高斯扩散模型(Gaussian Plume Model)、计算流体力学(CFD)模型以及PHAST、FLACS、SLAB、ALOHA以及HGSYSTEM整合模型,最后得到J种泄露情景模拟结果。

4.  根据权利要求1所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述模拟结果筛选步骤对一组4个传感器进行布局优化,且4个传感器采用正多边形结构,顺序编号为1~4,相邻编号传感器的间距相等,优化步骤如下:
步骤一、根据泄漏源的位置以及园区布局,传感器的检测限,确定基本布局参数L1,d和α的取值范围,其中L1为1号传感器距离泄漏源的距离,d为传感器间距,α为1-2和1-4传感器夹角的1/2;
步骤二、根据风频信息确定主导风向,传感器对称布置在主导风向的下风向上,实际风向与主导风向夹角为β,并取一个较大值β0做为优化区间,将其离散为实际风向序列(β1,β2,…,βM),序列长度为M;
步骤三、对布局参数L1,d,α在取值范围内离散成参数序列,长度分别为P1,P2,P3,组成种布局方案;
步骤四、对第k种布局方案(k=1,2,…,K)使用数据筛选算法,针对第j种情景模拟结果(j=1,2,…,J),筛选出该布局方案在风向为βm(m=1,2,…,M)时的有效布局数目
步骤五、对第k种布局方案(k=1,2,…,K)计算不同风向βm(m=1,2,…,M)时的情景适用率记录满足m=1,2,,…,M的最大风向范围Wk,取满足{max(Wk),k=1,2,…,K}的布局为最优化布局。

5.  根据权利要求4所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述模拟结果筛选步骤?#20449;?#26029;有效布局的标准为:对于?#25105;?#20256;感器布局,对特定风向下的每种泄漏情景,4个传感器中有3个或3个以上被烟羽覆盖则称该布局为在该风向和泄露情景条件下的有效布局。

6.  根据权利要求4或5所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所属模拟结果筛选步骤中,情景适用率为(m=1,2,…,Mk=1,2,…,K)。

7.  根据权利要求6所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述模拟结果数据筛选部分包含以下筛选算法:
步骤一、检查传感器布局参数L1,d,α,实际风向β,下风向敏感源位置(L2,Y2)以及泄露情景序号J是否符合要求;
步骤二、对第j个泄露情景(j=1,2,…,J)模拟结果的气体扩散距离,浓度分布,扩散时间和烟羽宽度进行插值,确定筛选起始点;
步骤三、计算参数γ,θ2,θ4,W1,和W2,其中γ为2号或4号传感器以泄漏源为顶点与主导风向的夹角,θ2为2号传感器以泄漏源为顶点与实际风向的夹角,θ4为4号传感器以泄漏源为顶点与实际风向的夹角,W1为环境敏?#26800;?#36317;离烟羽?#34892;?#32447;的垂?#26412;?#31163;,W2为环境敏?#26800;?#22788;的烟羽半宽;
步骤四、检查传感器布局在该泄露情景和实际风向下是否为有效布局,若是,继续;若不是,跳过并记录此泄露情景,继续步骤二;
步骤五、提取3个有效传感器位置的污染源浓度和扩散时间;
步骤六、检查泄露气体是否能够扩散?#26009;?#39118;向环境敏?#26800;悖?#21363;计算环境敏?#26800;?#22312;第j个泄露情景?#26800;?#20301;置参数Qj,如果能,继续步骤七,如果不能,记录此序号并继续步骤二;
步骤七、提取下风向环境敏?#26800;?#22788;有害气体的浓度和扩散时间;
步骤八、将所有提取到的传感器位置浓度和时间值以及下风向敏?#26800;?#27987;度和时间值整理并保存。

8.  根据权利要求1或7所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述的判断泄漏气体是否能扩散?#26009;?#39118;向环境敏?#26800;?#30340;方法为:计算环境敏?#26800;?#22312;气体泄露烟羽?#26800;?#20301;置参数Qj=W1/W2,若Qj≤1,则环境敏?#26800;?#21463;到泄漏气体扩散影响,反之则不受影响。

9.  根据权利要求1所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述神经网络训练部分实现过程如下:
步骤一、确定网络输入,以现场可得的参数作为输入,包括储存压力(p),风速(v),风向(β),温度(T),湿度(h),大气稳定度(S),风?#36213;?#19979;风向3台气体传感器的有效浓度测量值(c1,c2,c3)和报警时间(t1,t2,t3),下风向敏?#26800;?#30340;位置(L2,Y2);
步骤二、确定网络输出,以下风向环境敏?#26800;?#22788;有害气体到达的浓度(c)和时间(t)作为输出;
步骤三、网络内部结构确定,使用前向神经网络即BP网络,包含一个非线性隐含层和一个线性输出层,非线性隐含层取sigmoid传递函数,线性输出层取linear传递函数,网络不包含反馈回路;
步骤四、按照输入输出要求,使用数据筛选算法?#24613;?#36755;入和输出数据矩阵以及冗余的验证数据;
步骤五、使用MATLAB神经网络工具箱,按照单次统一训练方法对神经网络使用输入输出数据训练,得到网络参数;
步骤六、使用冗余输入数据作为神经网络输入,比较网络输出和冗余输出的差异,评估预测精度。

10.  根据权利要求1所述的化学品泄漏快速预测预警应急响应决策方法,其特征在于,所述神经网络与传感器系统集成部分包括如下步骤:
步骤一、建立单一风?#36213;?#19982;主导风向下风向的环境敏?#26800;?#30340;区域地图;
步骤二、对某单一风?#36213;?#36827;行风险分析,识别可能的泄露情?#23433;?#23545;泄露情景进行模拟;
步骤三、执行数据筛选步骤的传感器布局优化,获得该传感器布局在主导风向下风向的最大适用角度;
步骤四、对该风?#36213;?#20027;导风向下风向最大使用角度范围内的所有环境敏?#26800;?#36827;行数据筛选,得到一组神经网络训练的输入输出矩阵;
步骤五、使用数据筛选得到的神经网络输入输出矩阵进行训练和预测精度评估;
步骤六、将训练得到的神经网络参数制作成能够自动调用的应用程序,使传感器的DCS数据能够通过数据接口采集并使用应用程序计算;
步骤七、真实事故发生时,传感器报警—启动预制好的应用程序—预测泄露扩散对环境敏?#26800;?#30340;影响—决策人员判断是否需要疏散。

说明书

说明书一种化学品泄漏快速预测预警应急响应决策方法
?#38469;?#39046;域
本发明属于工业生产?#26800;?#23433;全预警?#38469;?#39046;域,特别涉及一种化学品泄漏快速预测预警应急响应决策方法。
背景?#38469;?
很多流程工业在生产过程中会使用或者产生一些对人体有害的有毒、有害气体(如氯气,光气等),这些工业园区一旦发生有毒有害气体泄漏事故,泄漏出的有毒有害气体可能会对周边一定范围内的人类造成严重的危害。在有毒有害气体泄漏事故发生时,泄漏的物质和大致泄漏位置能够比较容易地确定,但有害气体的泄漏量或者泄漏速率则很难在现场获得。在有限的时间利用有限的信息预测有毒气体的扩散趋势和影响范围是事故应急响应过程的重要?#26041;凇?#30446;前,传统的数值扩散预测模型,包括高斯烟羽模型,计算流体力学模型,以及一些较为成熟的扩散模拟软件都需要使用者提供详细的泄漏源泄露速率,并且需要一定的时间计算才能得到结果。因此,泄漏源的泄露速率或者泄漏量以及较长的计算时间限制了这些传?#31216;?#20307;扩散模型在事故应急响应以及辅助决策过程?#26800;?#24212;用,它们更多地被用于事故发生之后的调查分析。由于历史原因,我国相当一部分可能发生有毒有害气体泄露事故的工业园区周边3~5km范围内即有?#29992;?#21306;存在,当发生严重有毒有害气体泄露事故时,这些有毒有害气体很可能扩散至工业园区界区之外,对?#29992;?#21306;产生威胁。在没有快速有效地预测有毒有害气体扩散范围的方法时,决策者往往以最坏的情况考虑有害气体的覆盖范围,而最坏情况的预测结果往往意味着政府部门需要疏散几万甚至十几万人,这是非常不现实的。因此一种快速有效地预测有害气体扩散范围的方法对于事故应急响应?#36879;?#21161;决策具有重要意义。
处理有毒有害气体的工厂都会有针对性地在有毒有害气体储罐附近设置一个或多个有害气体传感器,用于监控是否有气体泄漏。这些气体传感器均与控制?#34892;?#30456;连,提供有毒气体泄漏报警信息。但目前很多工业园区均没有完全发挥气体传感器的作用,事故发生时,应急响应人员只能通过传感器获得泄漏气体的种类,瞬时浓度,而不能通过这些信息快速地预测泄漏气体的分布情况,进而采取有效的控制措施,制定合理的疏散计划。
目前,世界上普遍使用的事故后果分析方法主要包括使用不同种类的数?#30340;?#22411;(高斯烟羽模型,计算流体力学模型(CFD)以及商业模型PHAST,FLACS等对已经发生的事故进行重现,?#25925;?#22312;当时的事故泄露条件下泄漏气体的影响范围(包括死亡区,重伤区和影响区),并研究大气扩散条件对泄漏气体扩散范围和浓度分布的影响。但使用数?#30340;?#22411;分析的缺点在于必须知道泄漏源的源强(泄露速率)以及泄露形式(爆炸泄露/孔径泄露等),结合气象参数和传质扩散方程进行模拟,模?#36879;?#26434;,计算耗时长,不能用于事?#39318;?#24577;下的实时或者快速预测。
发明内容
为了克服上述现有?#38469;?#30340;缺点,本发明的目的在于提供一种化学品泄漏快速预测预警应急响应决策方法,对工业园区进行风险分析,泄露情景模拟,适量补充并优化园区现有的有毒有害气体传感器系统,将园区的有毒气体报警系统与气体扩散预测分析相结合,为事故应急响应决策提供?#38469;?#25903;持。
为了实现上述目的,本发明采用的?#38469;?#26041;案是:
一种化学品泄漏快速预测预警应急响应决策方法,包括风险因素识别、情景数?#30340;?#25311;、模拟结果筛选、神经网络训练以及训?#26041;?#26524;与传感器系统集成?#21442;?#20010;阶段,其中:
风险因素识别包括:识别化工园区的风险因素,量化各个风险要素并根据识别的风险要素及其取值范围,合理取值并组合各种可能发生的泄露情景;
情景数?#30340;?#25311;阶段包括:将园区风险因素识别步骤中组成的所有可能发生的泄露情景进行模拟,以获得不同泄露情景下泄露气体的影响范围;
模拟结果筛选包括:
对一种包括4个气体传感器的布局方案?#26800;?#20851;键参数进行优化,利用模拟得到的泄露气体浓度分布进行简单优化,得到最适传感器布局;
根据确定的传感器布局方案,提取在传感器布局可测量风向范围内的虚拟探测数据以及与之匹配的环境敏?#26800;?#27844;漏气体扩散数据,按照神经网络的训练逻辑?#24613;?#35757;练数据和校验数据;
神经网络训练步骤包括:
建立用于函数拟合的前向神经网络,将?#24613;?#22909;的训练数据作为神经网络训练的输入输出,计算网络参数;
将检验数据输入部分输入神经网络,结果部分与神经网络预测结果对比,评估预测精度;
神经网络与传感器和园区控制系统集成步骤:
将各个风?#36213;?#30340;模拟分析以及训?#26041;?#26524;与风?#36213;?#21644;环境敏?#26800;?#30340;地理位置信息以数据库和调用程序的形式结合,并提供与传感器系统的数据接口,实现从事故发生—传感器报警—模型快速预测—辅助决策的工作流程。
所述园区风险识别部分由以下步骤组成:
步骤一、利用风险评估识别风险因子及事故情景因素并判定可能发生的各类泄漏情景的必备要素,包括风险要素和事故情景要素。这些要素包括并不限于风险物质种类(有毒/易燃的气体或易挥发液体)、储量/用量、储存位置(空间坐标)、储存形式(压力,温度,设备)、风速、湿度、温度、大气稳定度、周边环境敏?#26800;?#20301;置(空间坐标)?#21462;?
步骤二、分别确定各个风险因子以及事故情境因素的取值范围(针对连续变量),在各个因素的取值范围内分别以一定步长划分数值序列(步长不得超过该因素取值范围的10%),最后将不同的风险因子/事故情景因素的各个取值组合成大量的可能发生的泄露情景。如共有n种风险因素,各个风险因素有Ni种取值(Ni≥1,整数),则共有种泄露情景。
所述情景数?#30340;?#25311;阶段使用的数?#30340;?#22411;包括:高斯及类高斯扩散模型(Gaussian Plume Model)、计算流体力学(CFD)模型以及PHAST、FLACS、SLAB、ALOHA、HGSYSTEM?#26085;?#21512;模型。最后得到J种泄露情景模拟结果。
所述模拟结果筛选步骤需要对一组4个传感器进行布局优化,且4个传感器采用正多边形结构,顺序编号为1~4,相邻编号传感器的间距相等,优化步骤如下:
步骤一、根据泄漏源的位置以及园区布局,传感器的检测限,确定基本布局参数L1,d和α的取值范围。其中L1为1号传感器距离泄漏源的距离,d为传感器间距,α为1-2和1-4传感器夹角的1/2.
步骤二、根据风频信息确定主导风向,传感器对称布置在主导风向下风向上,实际风向与主导风向夹角为β。并取一个较大值β0做为优化区间,将其离散为实际风向序列(β1,β2,…,βM),序列长度为M。(一般取β0=50°,将区间[-50°,50°]离散为间隔1°的风向序列)
步骤三、对布局参数L1,d,α在取值范围内离散成参数序列,长度分别为P1,P2,P3,组成种布局方案。
步骤四、对第k种布局方案(k=1,2,…,K)使用数据筛选算法,针对第j种情景模拟结果(j=1,2,…,J),筛选出该布局方案在风向为βm(m=1,2,…,M)时的有效布局数目
步骤五、对第k种布局方案(k=1,2,…,K)计算不同风向βm(m=1,2,…,M)时的情景适用率记录满足m=1,2,,…,M的最大风向范围Wk,取满足{max(Wk),k=1,2,…,K}的布局为最优化布局。
所述模拟结果筛选步骤?#20449;?#26029;有效布局的标准为:对于?#25105;?#20256;感器布局,对特定风向下的每种泄漏情景,4个传感器中有3个或3个以上被烟羽覆盖则称该布局为在该风向和泄露情景条件下的有效布局。
所属模拟结果筛选步骤中,情景适用率为(m=1,2,…,Mk=1,2,…,K)。
所述模拟结果数据筛选部分包含以下筛选算法:
步骤一、检查传感器布局参数L1,d,α,实际风向β,下风向敏感源位置(L2,Y2)以及泄露情景序号J等是否符合要求
步骤二、对第j个泄露情景(j=1,2,…,J)模拟结果的气体扩散距离,浓度分布,扩散时间和烟羽宽度进行插值,确定筛选起始点
步骤三、计算参数γ,θ2,θ4,W1,和W2,其中γ为2,4号传感器以泄漏源为顶点和主导风向夹角,θ2,θ4为2、4号传感器以泄漏源为顶点和实际风向的夹角,W1为环境敏?#26800;?#36317;离烟羽?#34892;?#32447;的垂?#26412;?#31163;,W2为环境敏?#26800;?#22788;的烟羽半宽
步骤四、检查传感器布局在该泄露情景和实际风向下是否为有效布局,若是,继续;若不是,跳过并记录此泄露情景,继续步骤二
步骤五、提取3个有效传感器位置的污染源浓度和扩散时间。
步骤六、检查泄露气体是否能够扩散?#26009;?#39118;向环境敏?#26800;悖?#21363;计算环境敏?#26800;?#22312;第j个泄露情景?#26800;?#20301;置参数Qj。如果能,继续步骤七,如果不能,记录此序号并继续步骤二。
步骤七、提取下风向环境敏?#26800;?#22788;有害气体的浓度和扩散时间。
步骤八、将所有提取到的传感器位置浓度和时间值以及下风向敏?#26800;?#27987;度和时间值整理并保存。
所述的判断泄漏气体是否能扩散?#26009;?#39118;向环境敏?#26800;?#30340;方法为:计算环境敏?#26800;?#22312;气体泄露烟羽?#26800;?#20301;置参数Qj=W1/W2,若Qj≤1,则环境敏?#26800;?#21463;到泄漏气体扩散影响,反之则不受影响。
所述神经网络训练部分实现过程如下:
步骤一、确定网络输入,以现场可得的参数作为输入,包括储存压力(p),风速(v),风向(β),温度(T),湿度(h),大气稳定度(S),风?#36213;?#19979;风向3台气体传感器的有效浓度测量值(c1,c2,c3)和报警时间(t1,t2,t3),下风向敏?#26800;?#30340;位置(L2,Y2)
步骤二、确定网络输出,以下风向环境敏?#26800;?#22788;有害气体到达的浓度(c)和 时间(t)作为输出。
步骤三、网络内部结构确定,使用前向神经网络(BP网络),包含一个非线性隐含层(sigmoid传递函数)和一个线性输出层(linear传递函数),网络不包含反馈回路。
步骤四、按照输入输出要求,使用数据筛选算法?#24613;?#36755;入和输出数据矩阵以及冗余的验证数据。(矩阵的列为输入输出各要素,行为不同情景的输入输出数据)
步骤五、使用MATLAB神经网络工具箱,按照单次统一训练方法对神经网络使用输入输出数据训练,得到网络参数。
步骤六、使用冗余输入数据作为神经网络输入,比较网络输出和冗余输出的差异,评估预测精度。
所述神经网络与传感器系统集成部分包括如下步骤:
步骤一、建立单一风?#36213;?#19982;主导风向下风向的环境敏?#26800;?#30340;区域地图。
步骤二、对某单一风?#36213;?#36827;行风险分析,识别可能的泄露情?#23433;?#23545;泄露情景进行模拟。
步骤三、执行数据筛选步骤的传感器布局优化,获得该传感器布局在主导风向下风向的最大适用角度。
步骤四、对该风?#36213;?#20027;导风向下风向最大使用角度范围内的所有环境敏?#26800;?#36827;行数据筛选,得到一组神经网络训练的输入输出矩阵。
步骤五、使用数据筛选得到的神经网络输入输出矩阵进行训练和预测精度评估。
步骤六、将训练得到的神经网络参数制作成能够自动调用的应用程序,使传感器的DCS数据能够通过数据接口采集并使用应用程序计算。
步骤七、真实事故发生时,传感器报警—启动预制好的应用程序—预测泄露扩散对环境敏?#26800;?#30340;影响(包括是否影响环境敏?#26800;?#25110;者泄漏气体到达环境敏?#26800;?#30340;时间和浓度)—决策人员判断是否需要疏散。
与现有?#38469;?#30456;比,本发明提出了一种处理有毒有害气体工厂的传感器布局 的简单优化方法,并引进使用前期风险识别,数?#30340;?#25311;以及神经网络训练的快速预测方法,以便在事故发生时能够及时有效地预测有毒有害气体的扩散范围,为园区周围?#29992;?#21306;人员疏散和保护提供决策支持。在园区现有有毒有害气体传感器的基础上,针对园区生产工艺以及周边环境,完成对园区生产过程中风险识别,泄露情景模拟,完善传感器布局并进行神经网络训练,克服了有毒气体泄漏事故发生?#21271;?#35686;信息不足以支持事故应急响应的不足,保证了方法的适用性和准确性。
附图说明
图1为本发明一个实施例方法的流程图。
图2为本发明一个实施例方法应用情景示意图。
图3为本发明一个实施例方法得到的传感器布局优化曲线。
图4为本发明一个实施例方法用于数据筛选的基本算法
图5为本发明一个实施例方法应用的神经网络结构图。
图6为本发明一个实施例方法应用的神经网络冗余数据验证。
图7为本发明一个实施例方法应用的神经网络对敏感区域是否受影响的判断。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方?#20581;?
图1是根据本发明的一个实施例的方法的流程图,根据本发明的一个实施例的方法包括:
—风险因素识别步骤
利用风险评估识别风险因子及事故情景因素并判定可能发生的各类泄漏情景的必备要素,包括风险要素和事故情景要素。这些要素包括并不限于风险物质种类(有毒/易燃的气体或易挥发液体)、储量/用量、储存位置(空间坐标)、储存形式(压力,温度,设备)、风速、湿度、温度、大气稳定度、周边环境敏?#26800;?#20301;置(空间坐标)?#21462;?#28982;后分别确定各个风险因子以及事故情境因素的取值范围(针对连续变量),在各个因素的取值范围内分别以一定步长划分数 值序列(步长不得超过该因素取值范围的10%),最后将不同的风险因子/事故情景因素的各个取值组合成大量的可能发生的泄露情景。如共有n种风险因素,各个风险因素有Ni种取值(Ni≥1,整数),则共有种泄露情景。
—泄露情景模拟步骤
该步骤使用传?#31216;?#20307;扩散模型,对前一步骤中识别出的各类泄露情景进行数?#30340;?#25311;,取得不同情况下的有毒有害气体扩散数据及分布情况。可用的模型包括高斯及类高斯扩散模型(Gaussian Plume Model)、计算流体力学(CFD)模型以及PHAST、FLACS、SLAB、ALOHA、HGSYSTEM?#21462;?
—有效数据筛选步骤
图2所示为有效数据筛选步骤的风?#36213;础?#28895;羽—传感器—下风向敏?#26800;?#30340;位置关系图。模拟结果筛选步骤需要对一组4个传感器进行布局优化,且4个传感器采用正多边形结构,顺序编号为1~4,相邻编号传感器的间距相?#21462;?#20248;化步骤如下:
步骤一、根据泄漏源的位置以及园区布局,传感器的检测限,确定基本布局参数L1,d和α的取值范围。其中L1为1号传感器距离泄漏源的距离,d为传感器间距,α为1-2和1-4传感器夹角的1/2.
步骤二、根据风频信息确定主导风向,传感器对称布置在主导风向下风向上,实际风向与主导风向夹角为β。并取一个较大值β0做为优化区间,将其离散为实际风向序列(β1,β2,…,βM),序列长度为M。(一般取β0=50°,将区间[-50°,50°]离散为间隔1°的风向序列)
步骤三、对布局参数L1,d,α在取值范围内离散成参数序列,长度分别为P1,P2,P3,组成种布局方案。
步骤四、对第k种布局方案(k=1,2,…,K)使用数据筛选算法,针对第j种情景模拟结果(j=1,2,…,J),筛选出该布局方案在风向为βm(m=1,2,…,M)时的有效布局数目其中有效布局定义为:对于?#25105;?#20256;感器布局,对特定风向下的 每种泄漏情景,4个传感器中有3个或3个以上被烟羽覆盖(即能探测到烟羽浓度)的布局方案。
步骤五、对第k种布局方案(k=1,2,…,K)计算不同风向βm(m=1,2,…,M)时的情景适用率(m=1,2,…,M k=1,2,…,K),记录满足m=1,2,,…,M的最大风向范围Wk,取满足{max(Wk),k=1,2,…,K}的布局为最优化布局。
图3为由L1=[40,60,80]m,d=[20,30,40]m和α=[30°,45°,60°]的取值组成的27中布局方案的布局优化结果(图3d)。在情景使用率为95%的条件下,传感器布局方案L1=40m,d=20m和α=60°为最优化布局,该布局的最大风向适用范围为﹣20°~20°。确定传感器最优化布?#31181;?#21518;,使用图4所?#38236;?#31579;选算法进行模拟结果筛选:
步骤一、检查传感器布局参数L1,d,α,实际风向β,下风向敏感源位置(L2,Y2)以及泄露情景序号j等是否符合要求
步骤二、对第j个泄露情景(j=1,2,…,J)模拟结果的气体扩散距离,浓度分布,扩散时间和烟羽宽度进行插值,确定筛选起始点
步骤三、计算参数γ,θ2,θ4,W1,和W2,其中γ为2,4号传感器以泄漏源为顶点和主导风向夹角,θ2,θ4为2、4号传感器以泄漏源为顶点和实际风向的夹角,W1为环境敏?#26800;?#36317;离烟羽?#34892;?#32447;的垂?#26412;?#31163;,W2为环境敏?#26800;?#22788;的烟羽半宽
步骤四、检查传感器布局在该泄露情景和实际风向下是否为有效布局(有效传感器数目大于3),若是,继续;若不是,跳过并记录此泄露情景,继续步骤二
步骤五、提取3个有效传感器位置的污染源浓度和扩散时间。
步骤六、检查泄露气体是否能够扩散?#26009;?#39118;向环境敏?#26800;悖?#21363;计算环境敏?#26800;?#22312;第j个泄露情景?#26800;?#20301;置参数Qj=W1/W2。如果能,即Qj≤1,继续步骤七,如果不能,即Qj>1,记录此序号并继续步骤二。
步骤七、提取下风向环境敏?#26800;?#22788;有害气体的浓度和扩散时间。
步骤八、将所有提取到的传感器位置浓度和时间值以及下风向敏?#26800;?#27987;度和时间值整理并保存。
—神经网络训练步骤
神经网络训练部分实现过程如下:
步骤一、确定网络输入,以现场可得的参数作为输入,包括储存压力(p),风速(v),风向(β),温度(T),湿度(h),大气稳定度(S),风?#36213;?#19979;风向3台气体传感器的有效浓度测量值(c1,c2,c3)和报警时间(t1,t2,t3),下风向敏?#26800;?#30340;位置(L2,Y2)
步骤二、确定网络输出,以下风向环境敏?#26800;?#22788;有害气体到达的浓度(c)和时间(t)作为输出。
步骤三、网络内部结构确定,如图5所示,使用前向神经网络(BP网络),包含一个非线性隐含层(sigmoid传递函数)和一个线性输出层(linear传递函数),网络不包含反馈回路。
步骤四、按照输入输出要求,使用数据筛选算法?#24613;?#36755;入和输出数据矩阵以及冗余的验证数据。(矩阵的列为输入输出各要素,行为不同情景的输入输出数据)
步骤五、使用MATLAB神经网络工具箱,按照单次统一训练方法对神经网络使用输入输出数据训练,得到网络参数。
步骤六、使用冗余输入数据作为神经网络输入,比较网络输出和冗余输出的差异,评估预测精度。如图6显示了一个氯气泄露实施例的神经网络预测情况。?#36158;?#25152;有子图的纵坐标均为特定泄露情境下,根据3个传感器报警信息、天气条件以及下风向敏感区域的位置,使用神经网络对下风向敏感区域的
(a)氯气的浓度(ppm)
(b)氯气到达敏感位置的时间(s)
(c)敏感位置烟羽的半宽W2(m)
(d)敏感位置距离实际风向的垂?#26412;?#31163;W1(m)
而图6a~6d的横坐标则是Phast模拟的结果,理论上,?#36158;?#25955;点的拟合结果应为直线y=x,实际结果显示,只有氯气浓度的神经网络预测结果相比Phast模拟结果偏小(斜率约为0.93),氯气到达时间、W1和W2的预测结果都非常精确。
利用图6c和6d得到的W1和W2的值可以预测下风向敏感区域是否受氯气泄漏的威胁,如图7所示,横坐标为用到的泄漏情景的数量:
(a)神经网络浓度预测值与Phast模拟值的相对误差
(b)根据图6中神经网络预测的W1和W2计算出的W1/W2比值
(c)根据Phast模拟以及烟羽中选点得到的W1/W2比值
(d)将预测W1/W2和理论W1/W2值取整后相减得到的逻辑结果
根据(a)可以发现神经网络预测值与理论值相比的最大误差不超过30%,图7b和7c非常接近,其差别在7d中显示:在2780例泄露情景中,有2例泄露情景下风向敏?#26800;?#29702;论上受到氯气泄露威胁,但神经网络预测的结果显示其没有受到威胁,称为“漏报?#20445;?#28431;报率为0.072%;另一方面,只有14例泄露情景?#34892;?#20998;享敏?#26800;?#29702;论上没有受到威胁,但神经网络预测显示其受到了威胁,称为“误报?#20445;?#35823;报率为0.504%。
步骤七、将训练得到的神经网络参数制作成能够自动调用的应用程序,使传感器的DCS数据能够通过数据接口采集并使用应用程序计算。
步骤八、真实事故发生时,传感器报警—启动预制好的应用程序—预测泄露扩散对环境敏?#26800;?#30340;影响(包括是否影响环境敏?#26800;?#25110;者泄漏气体到达环境敏?#26800;?#30340;时间和浓度)—决策人员判断是否需要疏散。

关于本文
本文标题:一种化学品泄漏快速预测预警应急响应决策方法.pdf
链接地址:http://www.pqiex.tw/p-6115578.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 喜乐彩走势图 快3走势图 全民炒股 青鹏棋牌客户端下载 蓝洞棋牌游戏app下载 七星彩规律表图表 足球球队比赛投注 体彩七星彩走势图规律 百赢棋牌官方网站下载 手机炒股流量