平码五不中公式规律
  • / 15
  • 下载费用:30 金币  

一种纳米抗菌TPU材料及其制备方法.pdf

关 键 ?#21097;?/dt>
一种 纳米 抗菌 TPU 材料 及其 制备 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201410370466.0

申请日:

2014.07.30

公开号:

CN104193949A

公开日:

2014.12.10

当前法律状态:

授权

有效性:

有权

法?#19978;?#24773;: 授权|||实质审查?#32435;?#25928;IPC(主分类):C08G 18/76申请日:20140730|||公开
IPC分类号: C08G18/76; C08G18/66; C08G18/42; C08G18/44; C08G18/48; C08G18/12; C08K13/06; C08K9/04; C08K9/02; C08K3/22 主分类号: C08G18/76
申请人: 苏州市雄林新材料科技有限公司; 东莞市吉鑫高分子科技有限公司
发明人: 王一良; 何建雄
地址: 215400 江苏省苏州市太仓市沙溪镇泰东村三组
优?#28909;ǎ?/td>
专利代理机构: 北京科亿知识产权代理事务所(普通合伙) 11350 代理人: 夏万征
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201410370466.0

授权公告号:

||||||

法律状态公告日:

2016.08.24|||2015.01.07|||2014.12.10

法律状态类型:

授权|||实质审查?#32435;?#25928;|||公开

摘要

本发明提出一种纳米抗菌TPU材料及其制备方法,由60-90重量份的聚酯多元醇、3-10重量份的聚醚多元醇、25-45重量份的异氰酸酯、6-20重量份的扩?#37255;痢?-4重量份的有机物改性的无机纳米抗菌剂、0.5-1重量份的无机物改性的无机纳米抗菌剂、0.5-2.5重量份的防?#22266;?#21152;剂、0.1-2重量份的抗氧化剂、1-3重量份的水解稳定剂、1-3重量份的阻?#25216;痢?.5-4重量份的爽滑剂、0.5-4重量份的抗粘连剂和1-15重量份的填充剂混合制备而成。本发明通过创新组合两种类型的改性无机纳米抗菌剂并将其添加到聚氨酯预聚物中,大大提高了TPU材料的抗菌性能,同时所制得的纳米抗菌TPU材料还具有耐磨性高、弹性韧性好、硬度大、撕拉强度高等技术优势,具有广阔的市场使用价值。

权利要求书

权利要求书
1.  一种纳米抗菌TPU材料,其特征在于,由60-90重量份的聚酯多元醇、3-10重量份的聚醚多元醇、25-45重量份的异氰酸酯、6-20重量份的扩?#37255;痢?-4重量份的有机物改性的无机纳米抗菌剂、0.5-1重量份的无机物改性的无机纳米抗菌剂、0.5-2.5重量份的防?#22266;?#21152;剂、0.1-2重量份的抗氧化剂、1-3重量份的水解稳定剂、1-3重量份的阻?#25216;痢?.5-4重量份的爽滑剂、0.5-4重量份的抗粘连剂和1-15重量份的填充剂混合制备而成,其中所述防?#22266;?#21152;剂由防霉剂和石蜡按质量1:1混合制得,且所述防霉剂由十二烷基-α-D葡萄糖苷、酮康唑、甲硝唑和苯甲酸钠按照重量份数比2-3:4-6:3-5:7-10混合制备得到,且所述防霉剂以20-40nm的纳米粒状态均匀分散于所述石蜡中;其中所述有机物改性的无机纳米抗菌剂是通过异氰酸酯的NCO基团对光催化活化下TiO2粉体的表面活性羟基进行如下改性反应得到:
;其中所?#37995;?#26426;物改性的无机纳米抗菌剂是以TiO2粉体为光催化主体、并在其?#22411;?#26102;掺杂MgO和FexO作为改性剂的MgO/FexO/TiO2纳米复合物,且MgO、FexO和TiO2间的重量比为:0.8-1.5:0.6-0.9:100;其中所述聚酯多元醇、聚醚多元醇和异氰酸酯合成端异氰酸酯基聚氨酯预聚体,所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物的分子链中,基本反应式如下:
,所?#37995;?#26426;物改性的无机纳米抗菌剂均匀分散到所述聚氨酯预聚物中。

2.  根据权利要求1所述的纳米抗菌TPU材料,其特征在于,其中所?#37995;?#26426;物改性的无机纳米抗菌?#26519;械腇exO由Fe2O3和FeO组成且重量比为4-6:1,所述TiO2粉体的粒径在8-30nm之间,所述MgO/FexO/TiO2纳米复合物的粒径在8-30nm之间。

3.  根据权利要求1或2所述的纳米抗菌TPU材料,其特征在于,其中所述的聚酯多元醇选自聚己二酸乙二醇酯二醇、聚己二酸乙二醇丙二醇酯二醇、聚己二酸乙二醇丁二醇酯二醇、聚己内酯多元醇和聚碳酸酯二醇?#26800;?#19968;种或多种;其中所述的聚醚多元醇选自聚四氢呋喃醚二醇、聚氧化丙烯二醇、聚氧化丙烯三醇和四氢呋喃-?#36153;?#19993;烷共聚醚?#26800;?#19968;种或多种;其中所述的异氰酸酯选自甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、1,5-萘二异氰酸酯(NDI)、对苯二异氰酸酯(PPDI)和二甲基联苯二异氰酸酯(TODI)?#26800;?#19968;种或多种;其中所述的扩?#37255;?#36873;自1,4-丁二醇、1,6-己二醇、乙二醇、1,2-丙二醇、4,4-亚甲基双(3-氯-2,6-二?#19968;?#33519;胺)M-CDEA、三乙?#21450;貳?#19977;异丙?#21450;分械?#19968;种或多种;其中所述的抗氧化剂为抗氧剂-264、双酚A、亚磷酸三苯酯、抗氧剂-1010、抗氧剂1076或亚磷酸三酯;其中所述的水解稳定剂为炭化二亚胺;其中所述的爽滑剂选自芥酸酰胺、?#20179;?#37232;胺、?#20179;?#37240;锌或油酸酰?#20998;械?#19968;种;其中所述的抗粘连剂选自石蜡、芥酸酰胺、?#20179;?#37232;胺或纳米二氧化硅?#26800;?#19968;种或多种;其中所述的填充剂选自碳酸钙或高岭?#26519;械?#19968;种或多种。

4.  根据权利要求1-3任一项所述的纳米抗菌TPU材料,其特征在于,所述的阻?#25216;?#30001;质量百分比含量为45%-60%的熔融指数处于5-10g/10min的聚丙烯、质量百分比含量为10%-20%的熔融指数在1.0-1.8 g/10min的聚乙烯、质量百分比含量为20%-30%的选自粉末状滑石、高岭石、绢云母、二氧化硅以及硅藻?#26519;械?#33267;少一种无机填料和质量百分比含量为10%-25%的选自十溴二苯基?#36873;?#21313;二氯十二氢二甲桥苯唑环?#26009;?#25110;其混合物的有机阻燃卤化物混合制得。

5.  根据权利要求1-4任一项所述的纳米抗菌TPU材料,其特征在于,所述纳米抗菌TPU材料针?#28304;?#32928;杆菌和金黄色葡萄球菌的抗菌?#30465;?9%、最小抑菌浓度25-50ppm、耐黄变?#29123;丁??#19969;?#25289;伸强度≥60MPa、撕裂强度≥100kg/cm、伸长?#30465;?40%、邵尔硬度80A-98A。

6.  权利要求1-5任一项所述纳米抗菌TPU材料的制备方法,其特征在于,包括以下步骤:
步骤一、制备有机物改性的无机纳米抗菌剂,通过异氰酸酯的NCO基团对光催化活化下TiO2粉体的表面活性羟基进行如下改性反应得到: ;
步骤二、制备无机物改性的无机纳米抗菌剂,以TiO2粉体为光催化主体,在其?#22411;?#26102;掺杂MgO和FexO作为改性剂,形成MgO/FexO/TiO2纳米复合物,其中MgO、FexO和TiO2间的重量比为:0.8-1.5:0.6-0.9:100;
步骤三、制备防?#22266;?#21152;剂,由防霉剂和石蜡按质量1:1混合制得;
步骤四、将60-90重量份的聚酯多元醇、3-10重量份的聚醚多元醇在100-150℃下真空脱水,然后冷却至30-50℃,在快速搅拌下加入25-45重量份的异氰酸酯,接着在60-90℃下保温反应2h,合成质量分数为5%的端异氰酸酯预聚体;
步骤五、取步骤一制得的有机物改性的无机纳米抗菌剂1-4重量份、取扩?#37255;?-20重量份、取步骤三制得的防?#22266;?#21152;剂0.5-2.5重量份、取抗氧化剂0.1-2重量份、取水解稳定剂1-3重量份、取阻?#25216;?-3重量份、取爽滑剂0.5-4重量份、取抗粘连剂0.5-4重量份一起混合于步骤四?#26800;?#36136;量分数为5%的端异氰酸酯预聚体液中,并搅拌均匀充?#21482;?#21512;反应生成聚氨酯预聚物,其中所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物分子链中,其基本反应式如下:
,,反应0.5小时后加入0.5-1重量份?#32435;鮮鑫?#26426;物改性的无机纳米抗菌剂和1-15重量份的填充剂,并再次充分搅拌均匀,得到纳米抗菌聚氨酯组合物;
步骤六、将步骤五得到的纳米抗菌聚氨酯组合物加入双?#33694;?#25380;出机中,在?#33694;?#36716;速为140-260rpm、温度为160-205℃下熔融挤出造粒得到纳米抗菌TPU材料。

7.  根据权利要求6所述的制备方法,其特征在于,其中所述步骤一具体包括:(1)将TiO2粉体的粒径研磨至15-25nm之间;(2)然后将所述粉体和异氰酸酯分散在无水甲苯中,且异氰酸酯用量充足,光照催化并用超声波振动5-30min,采用多次冷冻将杂气排除;(3)接着将上述混合物置于磁力搅拌机上,于95℃恒温反应6h;(4)反应后产品粉末用离心法分离,并再次用无水甲苯洗涤,去掉未反应的多余的异氰酸酯,得到有机物改性的无机纳米抗菌剂;(5)最后将得到的改性无机纳米抗菌剂于80℃下干燥24h,并将其加工成粒径10-30nm的粉体。

8.  根据权利要求6所述的制备方法,其特征在于,其中所述步骤二具体包括:(1)采用盐酸对TiO2粉体进行酸处理;(2)加入浓度为1mg/ml的FeCl3溶液,搅拌均匀后加入浓度为0.2mg/ml的MgCl2溶液,再次搅拌均匀并密封加热回流;(3)缓慢加入浓度为30mg/ml的NaOH溶液,并进行加热搅拌反应;(4)反应完成后用去离子水反复洗涤,并于100-120摄氏度下干燥20小时,得到MgO/FexO/TiO2纳米复合物作为所?#37995;?#26426;物改性的无机纳米抗菌剂,其中所述FeCl3溶液、MgCl2溶液的使用量满足在所生成的MgO/FexO/TiO2纳米复合物中MgO、FexO和TiO2间的重量比为:0.8-1.5:0.6-0.9:100。

9.  根据权利要求6所述的制备方法,其特征在于,其中所述步骤三具体包括:(1)制备防霉剂,由2-3质量份的十二烷基-α-D葡萄糖苷、4-6质量份的酮康唑、3-5质量份的甲硝唑和7-10质量份的苯甲酸钠混合均匀制得所述防霉剂,并由真空高速搅拌机将其分散成粒径在20-40nm的纳米粒状态;(2)将所述防霉剂均匀分散于石蜡中,且控制防霉剂和石蜡的质量比为1:1,制得所述防?#22266;?#21152;剂。

说明书

说明书一种纳米抗菌TPU材料及其制备方法
技术领域
本发明涉及抗菌聚合物制备技术,更具体?#32435;?#21450;一种纳米抗菌TPU材料及其制备方法。
背景技术
TPU(Thermoplastic polyurethanes)材料是一种?#20154;?#24615;聚氨酯弹性体材料,具有硬度范围宽、耐磨耐油、透明、弹性好等优点,因此在日用品、体育用品、玩具、装饰材料等领域得到广泛应用,并有逐步代替PVC以满足越来越多领域环保要求的趋势。因此TPU材料是一种新型的具有广阔市场前景的材料,但是由于TPU材料本身不具备抗菌杀菌性能,在一些对抗菌要求较高的领域无法获?#38665;?#27867;的使用,尽管现有技术中出现了一些在聚氨酯组合物中添加有抗菌剂的材料,但是其抗菌性能较差,尤其是对常见的大肠杆菌和金黄色葡萄球菌抗菌效果较差,同时通过添加抗菌组份后使得整个聚合物材料的硬度、韧性和撕拉强度等出?#32440;档停?#20005;重影响?#33487;?#20010;聚氨酯弹性体材料的使用性能,因此提供一种具有高抗菌功能的、耐黄变性高、透明度高、弹性韧性好的?#20154;?#24615;聚氨酯弹性体材料具有较大的市场价值。
发明内容
本发明基于上述现有技术问题,提出一种纳米抗菌TPU材料及其制备方法,通过创新改性无机纳米抗菌剂,尤其是创新的将两种改性类型(有机物改性的无机纳米抗菌剂和无机物改性的无机纳米抗菌剂)的无机纳米抗菌剂添加到聚氨酯预聚物中,大大提高了TPU材料的抗菌防霉性能,尤其是针对常见的大肠杆菌和金黄色葡萄球菌的抗菌率达到99以上,同时所制得的TPU材料还具有耐磨性高、弹性韧性好、硬度大、撕拉强度高等技术优势,大大促进了抗菌性TPU材料的广泛使用。
本发明解决上述技术问题所采取的技术方案如下:
一种纳米抗菌TPU材料,由60-90重量份的聚酯多元醇、3-10重量份的聚醚多元醇、25-45重量份的异氰酸酯、6-20重量份的扩?#37255;痢?-4重量份的有机物改性的无机纳米抗菌剂、0.5-1重量份的无机物改性的无机纳米抗菌剂、0.5-2.5重量份的防?#22266;?#21152;剂、0.1-2重量份的抗氧化剂、1-3重量份的水解稳定剂、1-3重量份的阻?#25216;痢?.5-4重量份的爽滑剂、0.5-4重量份的抗粘连剂和1-15重量份的填充剂混合制备而成,其中所述防?#22266;?#21152;剂由防霉剂和石蜡按质量1:1混合制得,且所述 防霉剂由十二烷基-α-D葡萄糖苷、酮康唑、甲硝唑和苯甲酸钠按照重量份数比2-3:4-6:3-5:7-10混合制备得到,且所述防霉剂以20-40nm的纳米粒状态均匀分散于所述石蜡中;其中所述有机物改性的无机纳米抗菌剂是通过异氰酸酯的NCO基团对光催化活化下TiO2粉体的表面活性羟基进行如下改性反应得到:
;其中所?#37995;?#26426;物改性的无机纳米抗菌剂是以TiO2粉体为光催化主体、并在其?#22411;?#26102;掺杂MgO和FexO作为改性剂的MgO/FexO/TiO2纳米复合物,且MgO、FexO和TiO2间的重量比为:0.8-1.5:0.6-0.9:100;其中所述聚酯多元醇、聚醚多元醇和异氰酸酯合成端异氰酸酯基聚氨酯预聚体,所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物的分子链中,基本反应式如下:
所?#37995;?#26426;物改性的无机纳米抗菌剂均匀分散到所述聚氨酯预聚物中。
进一步的根据本发明所述的纳米抗菌TPU材料,其中所?#37995;?#26426;物改性的无机纳米抗菌?#26519;械腇exO由Fe2O3和FeO组成且重量比为4-6:1,所述TiO2粉体的粒径在8-30nm之间,所述MgO/FexO/TiO2纳米复合物的粒径在8-30nm之间。
进一步的根据本发明所述的纳米抗菌TPU材料,其中所述的聚酯多元醇选自聚己二酸乙二醇酯二醇、聚己二酸乙二醇丙二醇酯二醇、聚己二酸乙二醇丁二醇酯二醇、聚己内酯多元醇和聚碳酸酯二醇?#26800;?#19968;种或多种;其中所述的聚醚多元醇选自聚四氢呋喃醚二醇、聚氧化丙烯二醇、聚氧化丙烯三醇和四氢呋喃-?#36153;?#19993;烷共聚醚?#26800;?#19968;种或多种;其中所述的异氰酸酯选自甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、1,5-萘二异氰酸酯(NDI)、对苯二异氰酸酯(PPDI)和二甲基联苯二异氰酸酯(TODI)?#26800;?#19968;种或多种;其中所述的扩?#37255;?#36873;自1,4-丁二醇、1,6-己二醇、乙二醇、1,2-丙二醇、4,4-亚甲基双(3-氯-2,6-二?#19968;?#33519;胺)M-CDEA、三 乙?#21450;貳?#19977;异丙?#21450;分械?#19968;种或多种;其中所述的抗氧化剂为抗氧剂-264、双酚A、亚磷酸三苯酯、抗氧剂-1010、抗氧剂1076或亚磷酸三酯;其中所述的水解稳定剂为炭化二亚胺;其中所述的爽滑剂选自芥酸酰胺、?#20179;?#37232;胺、?#20179;?#37240;锌或油酸酰?#20998;械?#19968;种;其中所述的抗粘连剂选自石蜡、芥酸酰胺、?#20179;?#37232;胺或纳米二氧化硅?#26800;?#19968;种或多种;其中所述的填充剂选自碳酸钙或高岭?#26519;械?#19968;种或多种。
进一步的根据本发明所述的纳米抗菌TPU材料,其中所述的阻?#25216;?#30001;质量百分比含量为45%-60%的熔融指数处于5-10g/10min的聚丙烯、质量百分比含量为10%-20%的熔融指数在1.0-1.8g/10min的聚乙烯、质量百分比含量为20%-30%的选自粉末状滑石、高岭石、绢云母、二氧化硅以及硅藻?#26519;械?#33267;少一种无机填料和质量百分比含量为10%-25%的选自十溴二苯基?#36873;?#21313;二氯十二氢二甲桥苯唑环?#26009;?#25110;其混合物的有机阻燃卤化物混合制得。
进一步的根据本发明所述的纳米抗菌TPU材料,其中所述纳米抗菌TPU材料针?#28304;?#32928;杆菌和金黄色葡萄球菌的抗菌?#30465;?9%、最小抑菌浓度25-50ppm、耐黄变?#29123;丁??#19969;?#25289;伸强度≥60MPa、撕裂强度≥100kg/cm、伸长?#30465;?40%、邵尔硬度80A-98A。
一种纳米抗菌TPU材料的制备方法,包括以下步骤:
步骤一、制备有机物改性的无机纳米抗菌剂,通过异氰酸酯的NCO基团对光催化活化下TiO2粉体的表面活性羟基进行如下改性反应得到:

步骤二、制备无机物改性的无机纳米抗菌剂,以TiO2粉体为光催化主体,在其?#22411;?#26102;掺杂MgO和FexO作为改性剂,形成MgO/FexO/TiO2纳米复合物,其中MgO、FexO和TiO2间的重量比为:0.8-1.5:0.6-0.9:100;
步骤三、制备防?#22266;?#21152;剂,由防霉剂和石蜡按质量1:1混合制得;
步骤四、将60-90重量份的聚酯多元醇、3-10重量份的聚醚多元醇在100-150℃下真空脱水,然后冷却至30-50℃,在快速搅拌下加入25-45重量份的异氰酸酯,接着在60-90℃下保温反应2h,合成质量分数为5%的端异氰酸酯预聚体;
步骤五、取步骤一制得的有机物改性的无机纳米抗菌剂1-4重量份、取扩?#37255;?6-20重量份、取步骤三制得的防?#22266;?#21152;剂0.5-2.5重量份、取抗氧化剂0.1-2重量份、取水解稳定剂1-3重量份、取阻?#25216;?-3重量份、取爽滑剂0.5-4重量份、取抗粘连剂0.5-4重量份一起混合于步骤四?#26800;?#36136;量分数为5%的端异氰酸酯预聚体液中,并搅拌均匀充?#21482;?#21512;反应生成聚氨酯预聚物,其中所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物分子链中,其基本反应式如下:
反应0.5小时候后加入0.5-1重量份?#32435;鮮鑫?#26426;物改性的无机纳米抗菌剂和1-15重量份的填充剂,并再次充分搅拌均匀,得到纳米抗菌聚氨酯组合物;
步骤六、将步骤五得到的纳米抗菌聚氨酯组合物加入双?#33694;?#25380;出机中,在?#33694;?#36716;速为140-260rpm、温度为160-205℃下熔融挤出造粒得到纳米抗菌TPU材料。
进一步的根据本发明所述的制备方法,其中所述步骤一具体包括:(1)将TiO2粉体的粒径研磨至15-25nm之间;(2)然后将所述粉体和异氰酸酯分散在无水甲苯中,且异氰酸酯用量充足,光照催化并用超声波振动5-30min,采用多次冷冻将杂气排除;(3)接着将上述混合物置于磁力搅拌机上,于95℃恒温反应6h;(4)反应后产品粉末用离心法分离,并再次用无水甲苯洗涤,去掉未反应的多余的异氰酸酯,得到有机物改性的无机纳米抗菌剂;(5)最后将制备的改性无机纳米抗菌剂于80℃下干燥24h,并将其加工成粒径10-30nm的粉体。
进一步的根据本发明所述的制备方法,其中所述步骤二具体包括:(1)采用盐酸对TiO2粉体进行酸处理;(2)加入浓度为1mg/ml的FeCl3溶液,搅拌均匀后加入浓度为0.2mg/ml的MgCl2溶液,再次搅拌均匀并密封加热回流;(3)缓慢加入浓度为30mg/ml的NaOH溶液,并进行加热搅拌反应;(4)反应完成后用去离子水反复洗涤,并于100-120摄氏度下干燥20小时,得到MgO/FexO/TiO2纳米复合物,作为所?#37995;?#26426;物改性的无机纳米抗菌剂,其中所述FeCl3溶液、MgCl2溶液的使用量满足在所生成的MgO/FexO/TiO2纳米复合物中MgO、FexO和TiO2间的重量比为: 0.8-1.5:0.6-0.9:100。
进一步的根据本发明所述的制备方法,其中所述步骤三具体包括:(1)制备防霉剂,由2-3质量份的十二烷基-α-D葡萄糖苷、4-6质量份的酮康唑、3-5质量份的甲硝唑和7-10质量份的苯甲酸钠混合均匀制得所述防霉剂,并由真空高速搅拌机将其分散成20-40nm的纳米粒状态;(2)将所述防霉剂均匀分散于石蜡中,且控制防霉剂和石蜡的质量比为1:1,制得所述防?#22266;?#21152;剂。
通过本发明的技术方案至少能够达到以下技术效果:
1)、本发明通过创新改性无机纳米抗菌剂,尤其是创新组合两种改性类型的无机纳米抗菌剂,并将其添加到聚氨酯预聚物中,使得所制备的纳米抗菌TPU材料具有较好的抗菌性能,针?#28304;?#32928;杆菌和金黄色葡萄球菌的抗菌率达到99以上,是一种低成本、高性能的抗菌防霉材料,促进了TPU材料在高抗菌要求领域的广泛使用;
2)、本发明所制得的TPU材料还具有耐磨性高、弹性韧性好、耐水解性高、硬度大、耐黄变性高、透明度高、撕拉强度高等技术优势,大大促进了抗菌性TPU材料的广泛使用,具有广阔的市场前景。
具体实施方式
以下对本发明的技术方案进行详细的描述,以使本领域技术人员能够更加清楚的理解本发明。
本发明创新的提出一种纳米抗菌TPU材料及其制备方法,所述纳米抗菌TPU材料由聚酯多元醇、聚醚多元醇、异氰酸酯、扩?#37255;痢?#26377;机物改性的无机纳米抗菌剂、无机物改性的无机纳米抗菌剂、防?#22266;?#21152;剂、抗氧化剂、水解稳定剂、阻?#25216;痢?#29245;滑剂、抗粘连剂和填充剂混合制备而成,其中按重量份计各组分的含量为:
聚酯多元醇60-90份聚醚多元醇3-10份异氰酸酯25-45份扩?#37255;?/ENTRY>6-20份有机物改性的无机纳米抗菌剂1-4份无机物改性的无机纳米抗菌剂0.5-1份防?#22266;?#21152;剂0.5-2.5份抗氧化剂0.1-2份水解稳定剂1-3份阻?#25216;?/ENTRY>1-3份爽滑剂0.5-4份抗粘连剂0.5-4份填充剂1-15份
其中所述的聚酯多元醇选自聚己二酸乙二醇酯二醇、聚己二酸乙二醇丙二醇酯二醇、聚己二酸乙二醇丁二醇酯二醇、聚己内酯多元醇和聚碳酸酯二醇?#26800;?#19968;种或多种。
其中所述的聚醚多元醇选自聚四氢呋喃醚二醇、聚氧化丙烯二醇、聚氧化丙烯三醇和四氢呋喃-?#36153;?#19993;烷共聚醚?#26800;?#19968;种或多种。
其中所述的异氰酸酯为甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、1,5-萘二异氰酸酯(NDI)、对苯二异氰酸酯(PPDI)和二甲基联苯二异氰酸酯(TODI)?#26800;?#19968;种或多种。
其中所述的扩?#37255;?#20026;1,4-丁二醇、1,6-己二醇、乙二醇、1,2-丙二醇、4,4-亚甲基双(3-氯-2,6-二?#19968;?#33519;胺)M-CDEA、三乙?#21450;貳?#19977;异丙?#21450;分械?#19968;种或多种。
其中所述的抗氧化剂为抗氧剂-264、双酚A、亚磷酸三苯酯、抗氧剂-1010、抗氧剂1076或亚磷酸三酯。
其中所述的水解稳定剂为炭化二亚胺。
其中所述的阻?#25216;?#38024;对本发明所述纳米抗菌TPU材料专?#25490;?#32622;,既要具有很好 的阻燃性能,又能够与其他各组分间具有良好的兼容性能,创新的所述的阻?#25216;?#30001;质量百分比含量为45%-60%的熔融指数处于5-10g/10min的聚丙烯、质量百分比含量为10%-20%的熔融指数在1.0-1.8g/10min的聚乙烯、质量百分比含量为20%-30%的选自粉末状滑石、高岭石、绢云母、二氧化硅以及硅藻?#26519;械?#33267;少一种无机填料和质量百分比含量为10%-25%的选自十溴二苯基?#36873;?#21313;二氯十二氢二甲桥苯唑环?#26009;?#25110;其混合物的有机阻燃卤化物混合制得。
其中所述的爽滑剂为芥酸酰胺、?#20179;?#37232;胺、?#20179;?#37240;锌或油酸酰?#20998;械?#19968;种。
其中所述的抗粘连剂为石蜡、芥酸酰胺、?#20179;?#37232;胺或纳米二氧化硅?#26800;?#19968;种或多种;
其中所述的填充剂为碳酸钙或高岭?#26519;械?#19968;种或多种。
为进一步提高聚氨酯组合物的整体抗菌防霉性能,本发明创新的对其?#26800;?#38450;?#22266;?#21152;剂?#36879;?#24615;无机纳米抗菌剂进?#26800;?#37197;置,首?#20154;?#36848;的防?#22266;?#21152;剂由防霉剂和石蜡按照1:1的质量百分比混合后制备得到,且所述的防霉剂?#19978;?#36848;质量组份的物?#39318;?#25104;:2-3份的十二烷基-α-D葡萄糖苷、4-6份的酮康唑、3-5份的甲硝唑、7-10份的苯甲酸钠,所述的防霉剂由上述组份混合均匀后由真空高速搅拌机分散成20-40nm的纳米粒状态,然后混合添加于石蜡中,形成应用于本发明的防?#22266;?#21152;剂。
其中所述的有机物改性的无机纳米抗菌剂是通过异氰酸酯对无机纳米抗菌剂进行表面改性,通过异氰酸酯的NCO基团与无机纳米抗菌剂的表面活性羟基进行反应,其基本反应式如?#28388;?#31034;:

其?#26800;?#26080;机纳米抗菌剂由锐钛型TiO2粉体组成,TiO2具有抗菌作用,其抗菌机理是光催化作用,在催化过程中能产生引起微生物致命的活性氧物种即OH自由基,同时所述TiO2的粒径在8-30nm之间,优选的为15-25nm之间。进而本发明所述改性无机纳米抗菌剂的制备方法如下:(1)、将TiO2粉体和异氰酸酯分散在无水甲苯中,其中异氰酸酯的用量充足,保证能够反应完所有的TiO2,光照催化并用超声波振动5-30min,采用多次冷冻法将杂气排除;(2)、将上述混合物置于磁力搅拌机上,于95℃恒温反应6h;(3)、反应后产品粉末用离心法分离,再次用无水甲苯洗涤,去 掉未反应的多余的异氰酸酯;(4)、将制备的有机物改性的无机纳米抗菌剂于80℃,干燥24h,并将其加工成粒径10-30nm的粉体。
其中所述的无机物改性的无机纳米抗菌剂是:以TiO2粉体为光催化主体,在其?#22411;?#26102;掺杂的FexO和MgO作为改性剂,即所?#37995;?#26426;物改性的无机纳米抗菌剂为:MgO/FexO/TiO2改性纳米复合物,其中FexO由Fe2O3和FeO组成且重量比为4-6:1,所述的MgO、FexO和TiO2之间的重量比为:0.8-1.5:0.6-0.9:100。TiO2具有抗菌作用,其抗菌机理是光催化作用,在催化过程中能产生引起微生物致命的活性氧物种即OH自由基,在其中掺杂铁由于Fe2+和Fe3+的共存能够大幅提高TiO2光催化主体的量?#26377;?#29575;,同时能够增强可见光的激发效率,而掺?#29992;?#33021;够实现在无光条件下的抗菌杀菌,同时能够对有毒气体具有吸收分解作用。所述的MgO/FexO/TiO2纳米复合物的具体制备过程为:(1)按上述重量份首先将TiO2粉体进行酸处理,优选的使用HCl;(2)将处理后的TiO2粉体加入至浓度为1mg/ml的FeCl3溶液中,溶液的量按照结合浓度和上述质量?#28909;?#23450;,搅拌均匀后加入浓度为0.2mg/ml的MgCl2溶液中,同理MgCl2溶液的量按照结合浓度和上述质量?#28909;?#23450;,再次搅拌均匀并密封加热回流;(3)然后在步骤2的溶液中缓慢浓度为30mg/ml的NaOH溶液,并进行加热搅拌反应;(4)反应完成后用去离子水反复洗涤,并与120摄氏度下干燥20小时,得到MgO/FexO/TiO2纳米复合物。
下面给出本发明所述纳米抗菌TPU材料的具体制备方法,包括以下步骤:
步骤一、按照上述方法制的有机物改性的无机纳米抗菌剂、无机物改性的无机纳米抗菌剂和所述防?#22266;?#21152;剂;
步骤二、将60-90份聚酯多元醇、3-10聚醚多元醇在100-150℃下真空脱水,然后冷却至30-50℃,在快速搅拌下加入25-45份的异氰酸酯,接着在60-90℃下保温反应2h,合成质量分数为5%的端异氰酸酯预聚体;
步骤三、将1-4重量份?#32435;?#36848;有机物改性的无机纳米抗菌剂、6-20重量份的扩?#37255;痢?.5-2.5重量份?#32435;?#36848;防?#22266;?#21152;剂、0.1-2重量份的抗氧化剂、1-3重量份的水解稳定剂、1-3重量份的阻?#25216;痢?.5-4重量份的爽滑剂和0.5-4重量份的抗粘连剂一起混合于步骤二?#26800;?#36136;量分数为5%的端异氰酸酯预聚体液中,并搅拌均匀充?#21482;?#21512;反应生成聚氨酯预聚物,其中所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物分子链中,其基本反应式如下:
反应0.5小时后加入0.5-1重量份?#32435;鮮鑫?#26426;物改性的无机纳米抗菌剂和1-15重量份的填充剂,并再次充分搅拌均匀,得到纳米抗菌聚氨酯组合物;
步骤四、将上述步骤三得到的纳米抗菌聚氨酯组合物加入双?#33694;?#25380;出机中,在?#33694;?#36716;速为140-260rpm、温度为160-205℃下熔融挤出造粒即得到本发明所述的纳米抗菌TPU材料。
经测定本发明所述纳米抗菌TPU材料具有如下优异性能:
抗菌率(大肠杆菌、金黄色葡萄球菌)≥99%、最小抑菌浓度达到25-50ppm,12秒内杀死病?#23613;?#32452;合物耐黄变?#29123;丁??#19969;?#32452;合物的拉伸强度≥60MPa、组合物的撕裂强度≥100kg/cm、组合物?#32435;?#38271;?#30465;?40%、组合物?#32435;?#23572;硬度80A-98A。本发明所述纳米抗菌TPU材料具有优良的抗菌性能,并能够作为很好的TPU弹性体应用于各种皮革制?#20998;小?
本发明通过对纳米抗菌剂进行改?#28304;?#26032;,所制得的纳米抗菌TPU材料在抗菌、弹性等方面性能优越,而?#20918;?#21457;明所述纳米抗菌TPU材料还具有耐黄变性高、透明度高、耐水解性高、弹性好、耐寒、持久耐用、材质环保、对人体无任?#25105;?#24418;?#25749;?#31561;技术优势。
实施例1
作为本发明第一优选实施例的纳米抗菌TPU材料的制备方法如下:
(1)、制备有机物改性无机纳米抗菌剂,将TiO2粉体粒径研磨至15-25nm之间,然后将所述粉体和异氰酸酯分散在无水甲苯中,且异氰酸酯用量充足,光照催化并用超声波振动10min,采用多次冷冻将杂气排除;接着将上述混合物置于磁力搅拌机上,于95℃恒温反应6h,反应后产品粉末用离心法分离,并再次用无水甲苯洗涤,去掉未反应的多余的异氰酸酯,得到具有如下结构的改性无机纳米抗菌剂:
最后将制备的无机物改性无机纳米抗菌剂于80℃下干燥24h,并将其加工成粒径10-30nm的粉体;
(2)制备无机物改性的无机纳米抗菌剂,首先将TiO2粉体进行酸处理,优选的使用HCl;接着将处理后的TiO2粉体加入至浓度为1mg/ml的FeCl3溶液中,搅拌均匀后加入浓度为0.2mg/ml的MgCl2溶液,再次搅拌均匀并密封加热回流;然后在前述溶液中缓慢加入浓度为30mg/ml的NaOH溶液,并进行加热搅拌反应;反应完成后用去离子水反复洗涤,并于120摄氏度下干燥20小时,得到MgO/FexO/TiO2纳米复合物作为所?#37995;?#26426;物改性的无机纳米抗菌剂,其中所述FeCl3、MgCl2溶液的使用量满足在生成的MgO/FexO/TiO2改性纳米复合物中MgO、FexO和TiO2间的重量比为:0.8:0.6:100。
(3)制备防?#22266;?#21152;剂,首先按照下述质量份称取:2份的十二烷基-α-D葡萄糖苷、4份的酮康唑、3份的甲硝唑和7份的苯甲酸钠,然后将这种组份物质混合均匀后由真空高速搅拌机分散成20-40nm间的纳米粒状态作为防霉剂;接着将上述防霉剂与石蜡按照1:1的质量百分比均匀混合,制得所述防?#22266;?#21152;剂。
(4)、将60重量份的聚酯多元醇、3重量份的聚醚多元醇在100℃下真空脱水,然后冷却至30℃,在快速搅拌下加入25份的异氰酸酯,接着在60℃下保温反应2h,合成质量分数为5%的端异氰酸酯预聚体;
(5)取(1)中制备的有机物改性无机纳米抗菌剂1重量份、取扩?#37255;?重量份、取防?#22266;?#21152;剂0.5重量份、取抗氧化剂0.1重量份、取水解稳定剂1重量份、取阻?#25216;?重量份、取爽滑剂0.5重量份、取抗粘连剂0.5重量份一起混合于步骤4?#26800;?#36136;量分数为5%的端异氰酸酯预聚体液中,并搅拌均匀充?#21482;?#21512;反应生成聚氨酯预聚物,其中所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物分子链中,其基本反应式如下:

反应0.5小时后加入0.5重量份?#32435;鮮鑫?#26426;物改性的无机纳米抗菌剂和3重量份的填充剂,并再次充分搅拌均匀,得到纳米抗菌聚氨酯组合物;
(6)、将上述步骤5得到的纳米抗菌聚氨酯组合物加入双?#33694;?#25380;出机中,在?#33694;?#36716;速为140rpm、温度为160℃下熔融挤出造粒即得到本发明所述的纳米抗菌TPU材料。
实施例2
作为本发明第二优选实施例的纳米抗菌TPU材料的制备方法如下:
(1)、制备有机物改性无机纳米抗菌剂,将TiO2粉体粒径研磨至15-25nm之间,然后将所述粉体和异氰酸酯分散在无水甲苯中,且异氰酸酯用量充足,光照催化并用超声波振动30min,采用多次冷冻将杂气排除;接着将上述混合物置于磁力搅拌机上,于95℃恒温反应6h,反应后产品粉末用离心法分离,并再次用无水甲苯洗涤,去掉未反应的多余的异氰酸酯,得到具有如下结构的改性无机纳米抗菌剂:
最后将制备的无机物改性无机纳米抗菌剂于80℃下干燥24h,并将其加工成粒径10-30nm的粉体;
(2)制备无机物改性的无机纳米抗菌剂,首先将TiO2粉体进行酸处理,优选的使用HCl;接着将处理后的TiO2粉体加入至浓度为1mg/ml的FeCl3溶液中,搅拌均匀后加入浓度为0.2mg/ml的MgCl2溶液,再次搅拌均匀并密封加热回流;然后在前述溶液中缓慢加入浓度为30mg/ml的NaOH溶液,并进行加热搅拌反应;反应完成后用去离子水反复洗涤,并于120摄氏度下干燥20小时,得到MgO/FexO/TiO2纳米复合物作为所?#37995;?#26426;物改性的无机纳米抗菌剂,其中所述FeCl3、MgCl2溶液的使用量满足在生成的MgO/FexO/TiO2改性纳米复合物中MgO、FexO和TiO2间的重量比为:1.5:0.9:100。
(3)制备防?#22266;?#21152;剂,首先按照下述质量份称取:3份的十二烷基-α-D葡萄糖苷、6份的酮康唑、5份的甲硝唑和10份的苯甲酸钠,然后将这种组份物质混合 均匀后由真空高速搅拌机分散成20-40nm间的纳米粒状态作为防霉剂;接着将上述防霉剂与石蜡按照1:1的质量百分比均匀混合,制得所述防?#22266;?#21152;剂。
(4)、将90重量份的聚酯多元醇、10重量份的聚醚多元醇在150℃下真空脱水,然后冷却至50℃,在快速搅拌下加入45份的异氰酸酯,接着在90℃下保温反应2h,合成质量分数为5%的端异氰酸酯预聚体;
(5)取(1)中制备的有机物改性无机纳米抗菌剂4重量份、取扩?#37255;?0重量份、取防?#22266;?#21152;剂2.5重量份、取抗氧化剂2重量份、取水解稳定剂3重量份、取阻?#25216;?重量份、取爽滑剂4重量份、取抗粘连剂4重量份一起混合于步骤4?#26800;?#36136;量分数为5%的端异氰酸酯预聚体液中,并搅拌均匀充?#21482;?#21512;反应生成聚氨酯预聚物,其中所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物分子链中,其基本反应式如下:
反应0.5小时后加入1重量份?#32435;鮮鑫?#26426;物改性的无机纳米抗菌剂和15重量份的填充剂,并再次充分搅拌均匀,得到纳米抗菌聚氨酯组合物;
(6)、将上述步骤5得到的纳米抗菌聚氨酯组合物加入双?#33694;?#25380;出机中,在?#33694;?#36716;速为260rpm、温度为205℃下熔融挤出造粒即得到本发明所述的纳米抗菌TPU材料。
实施例3
作为本发明第三优选实施例的纳米抗菌TPU材料的制备方法如下:
(1)、制备有机物改性无机纳米抗菌剂,将TiO2粉体粒径研磨至15-25nm之间,然后将所述粉体和异氰酸酯分散在无水甲苯中,且异氰酸酯用量充足,光照催化并用超声波振动20min,采用多次冷冻将杂气排除;接着将上述混合物置于磁力搅拌机上,于95℃恒温反应6h,反应后产品粉末用离心法分离,并再次用无水甲苯洗涤,去掉未反应的多余的异氰酸酯,得到具有如下结构的改性无机纳米抗菌剂:
最后将制备的无机物改性无机纳米抗菌剂于80℃下干燥24h,并将其加工成粒径10-30nm的粉体;
(2)制备无机物改性的无机纳米抗菌剂,首先将TiO2粉体进行酸处理,优选的使用HCl;接着将处理后的TiO2粉体加入至浓度为1mg/ml的FeCl3溶液中,搅拌均匀后加入浓度为0.2mg/ml的MgCl2溶液,再次搅拌均匀并密封加热回流;然后在前述溶液中缓慢加入浓度为30mg/ml的NaOH溶液,并进行加热搅拌反应;反应完成后用去离子水反复洗涤,并于120摄氏度下干燥20小时,得到MgO/FexO/TiO2纳米复合物作为所?#37995;?#26426;物改性的无机纳米抗菌剂,其中所述FeCl3、MgCl2溶液的使用量满足在生成的MgO/FexO/TiO2改性纳米复合物中MgO、FexO和TiO2间的重量比为:1:0.8:100。
(3)制备防?#22266;?#21152;剂,首先按照下述质量份称取:2.5份的十二烷基-α-D葡萄糖苷、5份的酮康唑、4份的甲硝唑和8.5份的苯甲酸钠,然后将这种组份物质混合均匀后由真空高速搅拌机分散成20-40nm间的纳米粒状态作为防霉剂;接着将上述防霉剂与石蜡按照1:1的质量百分比均匀混合,制得所述防?#22266;?#21152;剂。
(4)、将75重量份的聚酯多元醇、7重量份的聚醚多元醇在120℃下真空脱水,然后冷却至40℃,在快速搅拌下加入30份的异氰酸酯,接着在80℃下保温反应2h,合成质量分数为5%的端异氰酸酯预聚体;
(5)取(1)中制备的有机物改性无机纳米抗菌剂2.5重量份、取扩?#37255;?2重量份、取防?#22266;?#21152;剂2重量份、取抗氧化剂1重量份、取水解稳定剂1.5重量份、取阻?#25216;?.5重量份、取爽滑剂2重量份、取抗粘连剂2重量份一起混合于步骤4?#26800;?#36136;量分数为5%的端异氰酸酯预聚体液中,并搅拌均匀充?#21482;?#21512;反应生成聚氨酯预聚物,其中所述有机物改性的无机纳米抗菌剂通过接枝的方法接枝到聚氨酯预聚物分子链中,其基本反应式如下:
反应0.5小时后加入0.7重量份?#32435;鮮鑫?#26426;物改性的无机纳米抗菌剂和10重量份的填充剂,并再次充分搅拌均匀,得到纳米抗菌聚氨酯组合物;
(6)、将上述步骤(5)得到的纳米抗菌聚氨酯组合物加入双?#33694;?#25380;出机中,在?#33694;?#36716;速为200rpm、温度为180℃下熔融挤出造粒即得到本发明所述的纳米抗菌TPU材料。
经测定三种实施例所制得的本发明所述纳米抗菌TPU材料具有如下优异性能:
抗菌率(大肠杆菌、金黄色葡萄球菌)≥99%、最小抑菌浓度达到25-50ppm,12秒内杀死病?#23613;?#32452;合物耐黄变?#29123;丁??#19969;?#32452;合物的拉伸强度≥60MPa、组合物的撕裂强度≥100kg/cm、组合物?#32435;?#38271;?#30465;?40%、组合物?#32435;?#23572;硬度80A-98A。本发明所述纳米抗菌TPU材料具有优良的抗菌性能,并能够作为很好的TPU弹性体应用于各种皮革制?#20998;小?
本发明通过对纳米抗菌剂进行改?#28304;?#26032;,尤其是创新的使用两种改性类型的无机纳米抗菌剂,大大提高了所制得的纳米抗菌TPU材料的抗菌防霉优异性能,而?#20918;?#21457;明所述纳米抗菌TPU材料还具有耐黄变性高、透明度高、耐水解性高、弹性好、耐寒、持久耐用、材质环保、对人体无任?#25105;?#24418;?#25749;?#31561;技术优势。
以上仅是对本发明的优选实施方式进行了描述,并不将本发明的技术方案限制于此,本领域技术人员在本发明的主要技术构思的基础上所作的任何公知变形都属于本发明所要保护的技术?#20923;耄?#26412;发明具体的保护范围以权利要求书的记载为准。

关于本文
本文标题:一种纳米抗菌TPU材料及其制备方法.pdf
链接地址:http://www.pqiex.tw/p-6124267.html

当前资源信息

t****

编号: cj20190413122738256756

类型: 共享资源

格式: PDF

大小: 738.80KB

上传时间: 2019-04-13

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


平码五不中公式规律 彩票名字大全 北京劳动节跑滴滴赚钱吗 天津时时经网 梦幻西游怎么玩五开赚钱 哪个棋牌软件有二八杠 藏分出款有用吗 重庆时彩时彩开奖结果 美女pk精子手游视频 三公官网 北京pk10最稳定玩法