平码五不中公式规律
  • / 15
  • 下载费用:30 金币  

一种基于双阈值随机共振的低浓度气体检测方法.pdf

关 键 ?#21097;?/dt>
一种 基于 阈值 随机 共振 浓度 气体 检测 方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201410277331.X

申请日:

2014.06.20

公开号:

CN104132967A

公开日:

2014.11.05

当前法律状态:

授权

有效性:

有权

法?#19978;?#24773;: 授权|||实质审查的生效IPC(主分类):G01N 27/04申请日:20140620|||公开
IPC分类号: G01N27/04 主分类号: G01N27/04
申请人: 浙江理工大学
发明人: 童基均; 张光磊; 林勤光; 亢艳芹
地址: 310018 浙江省杭州市下沙高教园区2号大街5号
优先权:
专利代理机构: 杭州天勤知识产权代理有限公司 33224 代理人: 胡红娟
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201410277331.X

授权公告号:

||||||

法律状态公告日:

2016.12.07|||2014.12.10|||2014.11.05

法律状态类型:

授权|||实质审查的生效|||公开

摘要

本发明公开了一种基于双阈值随机共振的低浓度气体检测方法,包括:测量气敏传感器在不同浓度的参照气体下的电阻值;以测得的电阻值作为信号输入,并对该信号进行归一化处理,再利用傅里叶级数对进行曲线拟合得?#34903;?#26399;函数;对周期函数进行离散化处理得到输入函数;将输入函数和外加的高斯白噪声输入双阈值随机共振?#20302;常?#21033;用双阈值检测器进行赋值,并以赋值后的信号作为输出信号,并计算双阈值随机共振?#20302;?#30340;互相关系数;搜索最优的双阈值使得互相关系数最大,以最大的互相关系数和对应气体浓度建立线性回归方程;选取待测的低浓度气体,得到待测低浓度气体对应的最大互相关系数,代入所述的线性回归方程,即求出待测低浓度气体的浓度。

权利要求书

权利要求书
1.  一种基于双阈值随机共振的低浓度气体检测方法,其特征在于,包括以下?#34903;瑁?BR>1)将气敏传感器置于不同浓度的参照气体所处的环?#25345;校?#27979;得气敏传感器在各浓度下的电阻值;
2)以测得的电阻值作为信号输入,并对该信号进行归一化处理,再利用傅里叶级数对归一化处理后的信号进行曲线拟合,得?#34903;?#26399;函数f(t);
3)对周期函数f(t)进行离散化处理得到输入函数S(t);
4)将输入函数S(t)和外加的高斯白噪声n(t)输入双阈值随机共振?#20302;常?#21033;用双阈值检测器对输入函数S(t)和外加的高斯白噪声n(t)进行赋值,并以赋值后的信号作为输出信号y(t):
y(t)=1S(t)>θ2+n(t)0θ1+n(t)S(t)θ2+n(t)-1S(t)<θ1+n(t)]]>
其中,θ1和θ2为双阈值随机共振?#20302;?#30340;双阈值;
5)利用所述的输入函数S(t)和输出信号y(t),计算双阈值随机共振?#20302;?#30340;互相关系数;
6)搜索最优的双阈值θ1和θ2,使得?#34903;?)中的互相关系数最大,并以最大的互相关系数和对应参照气体的浓度建立线性回归方程;
7)选取待测的低浓度气体,执行?#34903;?)~?#34903;?)中的操作,得到待测低浓度气体对应的最大互相关系数,代入?#34903;?)中的线性回归方程,即求出待测低浓度气体的浓度。

2.  如权利要求1所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,在?#34903;?)中,利用下式方程?#36816;?#27979;的电阻值进行归一化处理,使其值域为[0,1];
f1(t)=(x(t)-xmin)/(xmax-xmin)
其中:x(t)为测量得到的电阻值,xmin为最小电阻值,xmax为最大电阻值。

3.  如权利要求1或2所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,在?#34903;?)中,得到的周期T的函数f(t)为:
f(t)=a0+Σn=13(ancosnwt+bnsin nwt)]]>
其中:a0、an、bn为函数系数,ancos nwt+bnsin nwt为n阶谐波,n=1,2,3,t为气体检测的时间。

4.  如权利要求1所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,在?#34903;?)中,高斯白噪声n(t)的均值为0,方差为σ,概率密度函数为其中x为连续随机变量。

5.  如权利要求1所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,在?#34903;?)中,互相关系数的表达式如下:
CCC=cov(S(t),y(t))var(S(t))var(y(t))=[S(t)-S&OverBar;][y(t)-y&OverBar;]&OverBar;(S(t)-S&OverBar;)2&OverBar;(y(t)-y&OverBar;)2&OverBar;]]>
其中,CCC为互相关系数,S(t)为输入函数,y(t)为输出信号,为S(t)的平均值,为y(t)的平均值。

6.  如权利要求1所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,在?#34903;?)中,搜索最优双阈值θ1和θ2的?#34903;?#22914;下:
(1)对双阈值随机共振?#20302;?#30340;双阈值θ1和θ2进行初始化,并确定阈值的搜索范围和步长;
(2)将输入函数S(t)和外加的高斯白噪声n(t)输入初始化后的双阈值随机共振?#20302;持校?#35745;算每一组双阈值所对应的拟合曲线的标准差SD;
(3)在搜索范围内,根据步长进行遍历搜索,得到标准差SD的最小值,以及相对应的双阈值θ1、θ2。

7.  如权利要求6所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,线性拟合曲线与最大互相关系数之间的标准差SD为:
SD=1NΣi=1N(CCCi-yi)2]]>
其中:N代表所有不同浓度气体的数量,CCCi代表的各浓度对应的最 大互相关系数,yi代表的是各浓度经过曲线拟合后的值。

8.  如权利要求7所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,阈值θ1的搜索范围为[-1.0,0.26],?#20302;?#38408;值θ2的搜索范围为[0.89,1.5],搜索步长均为0.02。

9.  如权利要求8所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,在?#34903;?)中,建立的线性回归方程为y=0.0028x+0.2051,y为最大互相关系数,x为气体的浓度。

10.  如权利要求1所述的基于双阈值随机共振的低浓度气体检测方法,其特征在于,在?#34903;?)中,首先向测试气体的气室中通入惰性气体,使气敏传感器的响应值达到稳定状态,再向气室中通入特定浓度的参照气体,测量3次取平均值,作为气敏传感器在此浓度下的电阻值。

说明书

说明书一种基于双阈值随机共振的低浓度气体检测方法
技术领域
本发明涉及一种在强噪声下的微弱信号检测方法,尤其涉及一种基于双阈值随机共振的低浓度气体检测方法。
背景技术
随着对低浓度气体检测研究的不断深入,呈现出越来越多的检测方法。超声波技术、光干涉原理、红外吸收光谱原理、环形光路的Sagnac效应及腔衰荡测量等技术都可以应用到低浓度的测量。但是由于灵敏度不够,这些测量技术只能在实验室的条件下进行,而且费时、费力、成本高,难以普及。
随机共振理论为强噪声背景下微弱信号检测提供了?#28388;?#36335;。随机共振现象在一些领域,?#28909;?#20449;号处理、神经信息学、机械误差检测、环境保护等一直备受关注,在信号处理方面的研究,特别将随机共振应用于弱信号的放大识别、传输还原等有其独特的优势。这种现象通常在一定程度上可以描述为提高输出信号的信噪比,是弱信号特征提取的重要组成部分。
如公开号为CN103698371A的发明专利中提供了一种基于自适应随机共振的低浓度气体检测方法,对采集到的传感器响应的电阻信号进行预处理,使之成为小参数周期信号,适合于非线性双稳?#20302;?#30340;输入,设置?#20302;?#21442;数的初始值和寻优范围,利用加权信噪比作为效果评价指标,自适应的寻找最佳匹配的?#20302;?#21442;数,通过比较加权信噪比的最大值来区分不同浓度的确定性混合气体。
随机共振是一种非线性现象,通过加入?#23454;?#22122;声可以增强?#20302;?#30340;响应,对?#20302;?#24615;能有显著的提高。近些年,单阈值随机共振?#20302;?#24050;经得到一定的应用。2000年,Stocks最早提出多阈值随机共振理论,认为多阈值检测器相对于单阈值检测器来说有效的扩展了电平信号的动态范围。多阈值 检测器可以由单阈值检测器发展而来,在一个简单的阈值?#20302;持?#36873;用多个?#23454;?#30340;数值作为阈值,并用互相关系数和信息量作为表征。但是在实际应用中,多阈值随机共振还没有得到很大的发展,特别是在低浓度气体检测方面的研究微乎其微。
在低浓度气体检测方面,由于气体浓度很低,检测信号会淹没在噪声中。采用传感器阵列和光谱法的气体检测技术,存在着灵敏度不够高、噪声大等诸多问题。针对这种不足,本发明提出了一种双阈值随机共振的低浓度气体检测方法。
发明内容
本发明的目的在于克服弱信号在检测过程中淹没在噪声背景中的缺陷,以及阈值随机共振?#20302;称?#20215;指标的局限性,因而提出了一种利用双阈值随机共振?#20302;程?#21462;最大互相关系数作为评价指标的低浓度气体检测方法。
一种基于双阈值随机共振的低浓度气体检测方法,包括以下?#34903;瑁?
1)将气敏传感器置于不同浓度的参照气体(浓度已知)所处的环?#25345;校?#27979;得气敏传感器在各浓度下的电阻值;
2)以测得的电阻值作为信号输入,并对该信号进行归一化处理,再利用傅里叶级数对归一化处理后的信号进行曲线拟合,得?#34903;?#26399;函数f(t);
3)对周期函数f(t)进行离散化处理得到输入函数S(t);
4)将输入函数S(t)和外加的高斯白噪声n(t)输入双阈值随机共振?#20302;常?#21033;用双阈值检测器对输入函数S(t)和外加的高斯白噪声n(t)进行赋值,并以赋值后的信号作为输出信号y(t):
y(t)=1S(t)>θ2+n(t)0θ1+n(t)S(t)θ2+n(t)-1S(t)<θ1+n(t)]]>
其中,θ1和θ2为双阈值随机共振?#20302;?#30340;双阈值;
5)利用所述的输入函数S(t)和输出信号y(t),计算双阈值随机共振?#20302;?#30340;互相关系数;
6)搜索最优的双阈值θ1和θ2,使得?#34903;?)中的互相关系数最大,并 以最大的互相关系数和对应的参照气体的浓度建立线性回归方程;
7)选取待测的低浓度气体,执行?#34903;?)~?#34903;?)中的操作,得到待测低浓度气体对应的最大互相关系数,代入?#34903;?)中的线性回归方程,即可求出待测低浓度气体的浓度。
在本发明中,参照气体和待测的低浓度气体为同一种气体,参照气体用于数据的采集和线性回归方程的建立,其浓度是已知的,待测的低浓度气体用于验证本发明中技术方案的准确性。
在?#34903;?)中,利用下式方程?#36816;?#27979;的电阻值进行归一化处理,使其值域为[0,1];
f1(t)=(x(t)-xmin)/(xmax-xmin)
其中:x(t)为测量得到的电阻值,xmin为最小电阻值,xmax为最大电阻值。
在这里归一化使数据具有可参照性,而且使数据之间的相对大小不至于差别很大,消除不同数量级带来的影响。
在?#34903;?)中,进行曲线拟合得到的周期T的函数f(t)为:
f(t)=a0+Σn=13(ancosnwt+bnsin nwt)]]>
其中:a0、an、bn为函数系数,ancos nwt+bnsin nwt为n阶谐波,n=1,2,3,t为气体检测的时间。
曲线拟合不仅可以增大输入的信号量,还可以对原有信号的毛刺进行平滑处理,减少原信号的误差。
在?#34903;?)中,高斯白噪声n(t)的均值为0,方差为σ,概率密度函数为其中x为连续随机变量。
在?#34903;?)中,互相关系数的表达式如下:
CCC=cov(S(t),y(t))var(S(t))var(y(t))=[S(t)-S&OverBar;][y(t)-y&OverBar;]&OverBar;(S(t)-S&OverBar;)2&OverBar;(y(t)-y&OverBar;)2&OverBar;]]>
其中,CCC为互相关系数,S(t)为输入函数,y(t)为输出信号,为S(t)的平均值,为y(t)的平均值。
在?#34903;?)中,搜索最优双阈值θ1和θ2的?#34903;?#22914;下:
(1)对双阈值随机共振?#20302;?#30340;双阈值θ1和θ2进行初始化,并确定阈值的搜索范围和步长;
(2)将输入函数S(t)和外加的高斯白噪声n(t)输入初始化后的双阈值随机共振?#20302;持校?#35745;算每一组双阈值所对应的拟合曲线的标准差SD;
(3)在搜索范围内,根据步长进行遍历搜索,得到标准差SD的最小值,以及相对应的双阈值θ1、θ2。
本发明中,线性拟合曲线与最大互相关系数之间的标准差SD为:
SD=1NΣi=1N(CCCi-yi)2]]>
其中:N代表所有不同浓度气体的数量,CCCi代表的各浓度对应的最大互相关系数,yi代表的是各浓度经过曲线拟合后的值。
在本发明中,阈值θ1的搜索范围为[-1.0,0.26],?#20302;?#38408;值θ2的搜索范围为[0.89,1.5],搜索步长均为0.02。
优选的,在?#34903;?)中,建立的线性回归方程为y=0.0028x+0.2051,y为最大互相关系数,x为气体的浓度。
为?#20849;?#24471;的电阻值更加准确,在?#34903;?)中,首先向测试气体的气室中通入惰性气体,使气敏传感器的响应值达到稳定状态,再向气室中通入特定浓度的参照气体,测量3次取平均值,作为气敏传感器在此浓度下的电阻值。
本发明用最大互相关系数表征的双阈值随机共振算法搜索最佳的阈值参数,其特点在于应用多阈值和随机共振相结合,并利用最大互相关系数作为?#20302;?#34920;征,可以自动搜索最佳的双阈值参数。设计的双阈值参数调节随机共振方法可以快速、准确的检测未知气体浓度。在实际工程应用中克服了信噪比和信息量作为评价指标的不足和随机共振的?#20302;?#21442;数难以确定的限制,有效的实现了低浓度气体的检测。通过最大互相关系数可以标定未知气体浓度,区分不同浓度的确定性混合气体,灵敏而高效。
附图说明
图1为本发明提供的双阈值随机共振实现流程示意图。
图2为传感器气敏测试?#20302;呈?#24847;图。
图3为6种浓度氨气进过归一化处理,得到传感器响应与时间的关系。
图4为种氨气浓度的传感器响应值和拟合曲线得到的线性关系。
图5为双阈值随机共振的?#20302;?#27169;型。
图6和图7分别为不同双阈值条件下气体浓度为3ppb和60ppb时互相关系数与噪声强度的关?#20302;跡?#29992;于划分随机共振?#20302;?#21452;阈值的具体范围,大量缩小搜素阈值的时间。
图8是在阈值θ1=-0.22、θ2=1.08、噪声强度σ=[0,4]条件下得到的不同浓度下的互相关系数与噪声强度关?#20302;肌?
图9为最大互相关系数与其相对应气体的浓度的线性关系。
具体实施方式
下面用一个实例并结合附图进一步说明本发明的技术方案。
如图1所示,一种基于双阈值随机共振的低浓度气体检测方法,包括以下?#34903;瑁?
第一步:利用数字万用表和LabView软件记录传感器阻值。
具体为:传感器采用DEP制备PEDOT/PSS-SWCNTs气敏传感器,该传感器的检测范围是3ppb-1ppm。如图2所示,制备的气敏传感器放入气室4中,并且在气室4中充满聚四氟乙烯。在实验过程中,以两个气瓶内的高纯氮气(>99.99%)作为载体和氨气作为目标气体。质量控制器1(VICI,Adjustable span,Model202)的作用是控制所需的浓度,流量计2确定混合气体的流速为0.2L/min,用数字万用表3和LabView软件记录传感器阻值。
所有的气敏测试实验均在室温20℃、空气相对湿度为70%和一个标准大气压的环境下进行。测试前向气室通入一段时间的氮气,使传感器的响应值达到稳定状态,得到传感器的电阻值R0。向气室中通入氨气,通过质量控制器使氨气浓度在3ppb,实验重复3次取平均值,记?#21363;?#26102;传感器的电阻值R。然后向气室中通入氮气进行洗气,再向气室中通入6ppb的 氨气,重复上面实验。?#28304;?#31867;推可以得到6ppb、12ppb、18ppb、40ppb、60ppb氨气的传感器响应值。传感器对目标气体的响应值为:
Res=(R-R0)/R0×100%
六种氨气浓度的传感器响应如图3、图4所示。
图3中横坐标代表时间轴,纵坐标代表的是传感器的电阻响应值,是数据归一化后得来的,原始数据没有经过坐标转换。图4中横坐标代表浓度,纵坐标代表传感器的响应值,根据公式Res计算而来。从图4看到每一浓度的响应值大致趋势呈上升,但是线性关系不是很理想。
第二步:?#36816;?#26377;信号进行预处理,利用傅里叶级数进行曲线拟合,得到一个周期函数,离散化处理后得到输入函数。
具体为:在输入信号和高斯白噪声?#23478;?#30693;时,可以通过双阈值模型来产生随机共振现象。图5是双阈值随机共振的?#20302;?#27169;型,其中输入信号S(t)是一个离散函数,通过对原始数据进行预处理得到。利用下式方程?#36816;?#27979;的电阻值进行归一化处理,使其值域为[0,1]。
f1(t)=(x(t)-xmin)/(xmax-xmin)
其中x(t)为测量得到的电阻值,xmin为最小电阻值,xmax为最大电阻值,得到如图3所示的传感器响应值。利用傅里叶级数对f1(t)进行曲线拟合,得到的周期T的函数f(t)为:
f(t)=a0+Σn=13(ancosnwt+bnsin nwt)]]>
其中:a0、an、bn为函数系数,ancosnwt+bnsinnwt为n阶谐波,n=1,2,3,t为气体检测的时间。
然后把上面得?#34903;?#26399;函数f(t)进行离散化处理,得到输入信号S(t),方程(输入函数)为:S(t)=(s1,s2,s3,......,sn)。?#20302;程?#21152;的噪声信号n(t)是均值为0,方差为σ,x为连续随机变量,概率密度函数为的高斯白噪声。最后把S(t)和n(t)作为?#20302;?#30340;输入,利用双阈值交叉模型建立数学模型。
第三步:把输入函数和高斯白噪声代入双阈值交叉模型中,通过双阈 值检测器来判断赋予输出函数的值,然后计算?#20302;?#30340;互相关系数。
在通过双阈值检测器的过程中可以调节双阈值θ1、θ2来优化?#20302;常?#20351;?#20302;?#24615;能达到最佳,进而获得最佳的最大互相关系数作为对应浓度的特征参数,?#19994;?#26368;佳的线性关系。
具体为?#21644;?中双阈值检测器的函数模型为
y(t)=1S(t)>θ2+n(t)0θ1+n(t)S(t)θ2+n(t)-1S(t)<θ1+n(t)]]>
?#34903;衴(t)为输出信号,?#34903;笑?、θ2是两个阈值,其中θ1<θ2,n(t)是高斯白噪声,和S(t)作为输入信号,通过“双阈值检测器”被赋予一系列的-1、0、1,使其作为输出信号。根据具体情况优化?#20302;?#30340;阈值,并判断输入信号是否产生随机共振。
本发明利用互相关系数描述输入信号和输出信号之间的相似度。如果两个信号完全相同,则相关系数为1,如果完全不相关,则相关系数为0。在双阈值随机共振?#20302;持校?#36890;过上面叙述可以得到输入信号S(t)和输出信号y(t)。通过var(S(t))和var(y(t))的方程计算出S(t)和y(t)的方差,cov(S(t),y(t))的方程计算S(t)和y(t)的协方差。CCC的方程是互相关系数的表达式,把式var(S(t))、var(y(t))、cov(S(t),y(t))代入CCC的方程中,就可以得到?#20302;?#30340;互相关系数。
var(S(t))=[S(t)-S&OverBar;]2&OverBar;var(y(t))=[y(t)-y&OverBar;]2&OverBar;]]>
cov(S(t),y(t))=(S(t)-S&OverBar;)(y(t)-y&OverBar;)&OverBar;]]>
ccc=cov(S(t),y(t))var(S(t))var(y(t))=[S(t)-S&OverBar;][y(t)-y&OverBar;]&OverBar;(S(t)-S&OverBar;)2&OverBar;(y(t)-y&OverBar;)2&OverBar;]]>
据上所述,可以计算?#25105;?#21452;阈值随机共振?#20302;持?#20114;相关系数和噪声强度的关系。选择最佳的双阈值,使?#20302;?#24615;能达到最佳状态,才能更全面的研究双阈值随机共振?#20302;?#26816;测弱信号的性能。而要?#19994;?#26368;佳的双阈值,必须?#20154;?#23567;双阈值的值域。通过仿真实验发现阈值θ1的范围是随着浓度的增加而增大,阈值θ2的范围是随着浓度的增加而减小,所以选择3ppb和 60ppb进行分析可以?#19994;?#21452;阈值的范围。噪声强度范围设定为[0,4],取输入信号的周期范围为[0,620s]。图6、7给出了3ppb和60ppb时双阈值下的随机共振关?#20302;肌?
图6给出了氨气浓度为3ppb时,互相关系数随噪声强度的变化规律,并同时绘出了双阈值各不相同时的最大互相关系数的情况。当θ2固定不变,θ1<0.26时可以发生随机共振现象,且随着θ1的减小,最大互相关系数?#24067;?#23567;。当θ1固定不变,θ2>0.45的时候可以发生随机共振,它对?#20302;?#30340;影响占的比重较大,随着θ2的增加,最大互相关系数相应减小。图7给出了氨气浓度为60ppb时,最大互相关系数随阈值的变化情况。但是只有阈值θ1<0.35和阈值θ2>0.89的时候才能发生随机共振,它的变化趋势和图a是相似的。在对这两幅图进行综合分析,当阈值θ2>1.5时,图6和图7的最大互相关系数已经接近,不利于后续的线性回归。当阈值θ1<-1.0的时候,图6和图7的最大互相关系数都是越来越小,他们之间的差值越来越难区分。综上分析可知?#21512;低?#38408;值θ1的范围为[-1.0,0.26],?#20302;?#38408;值θ2的范围是[0.89,1.5]。
线性拟合曲线与各浓度对应的最大互相关系数之间的标准差定义为:
SD=1NΣi=1N(CCCi-yi)2]]>
其中N代表所有浓度的个数,在本示例中N=6,CCCi代表的是各浓度对应的最大互相关系数,yi代表的是各浓度经过曲线拟合后的值。在已知双阈值值域的情况下,可以利用拟合曲线线性度的?#27809;?#26469;评价随机共振?#20302;?#30340;优劣。进而调节双阈值的大小,以得到优化结果。当SD达到最小值的时候,双阈值为随机共振?#20302;?#30340;最优参数,随机共振效应也是最佳的。
本发明提出的方法可以实现双阈值θ1、θ2的自动调整,并?#19994;?#26368;优化的参数。利用标准差SD作为传感器响应特征值的线性度的评价参数,具有快速、精确的优化标准,实现弱信号特征的有效提取。
获取最优化双阈值的?#34903;?#22914;下:
3.1、双阈值?#20302;?#21442;数初始化,使噪声强度σ=[0,4],初始化阈值θ1=-1.0、 θ2=0.89,确定?#20302;?#30340;搜索步长为0.02。
3.2、将预处理后的信号和外加的高斯白噪声作为输入信号输入到初始化以后的双阈值随机共振?#20302;持校?#35745;算每一组双阈值所对应的拟合曲线的标准差SD。
3.3、在规定双阈值值域的范围内,进行遍历搜索,寻?#20918;?#20934;差SD的最小值,当双阈值都超出搜索范围时,保存SD的最小值和对应的双阈值θ1、θ2。保存最好的线性关系的直线,并记录对应双阈值θ1、θ2的值。当双阈值没有超出搜索范围时,改变双阈值θ1、θ2的值,继续循?#26041;?#34892;?#34903;?.2。
3.4、输出标准差SD的最小值,以及所对应的双阈值θ1、θ2。
在以上优选过程中,得到最优化的双阈值θ1=-0.22、θ2=1.08,标准差SD=0.0126,相关系数R=0.9687。通过双阈值随机共振?#20302;?#24471;到的不同浓度下的互相关系数与噪声强度关?#20302;?#22914;图8所示。对应的低浓度气体的浓度与最大互相关系数的线性关系如图9所示,方程为:
y=0.0028x+0.2051
?#34903;校瑈1为最大互相关系数,x为气体的浓度,单位为ppb。在已知双阈值θ1、θ2时,可以求出未知浓度的最大互相关系数,代入上述方程,求出对应的浓度。
第四步:然后利用第三步得到的最大互相关系数,代入?#34903;?.4得到的回归方程可以求出相关的浓度。
具体为?#21644;?#36807;第三步可以知道双阈值随机共振?#20302;?#30340;?#20302;?#21442;数。双阈值θ1=-0.22、θ2=1.08,噪声强度σ=[0,4],并且知道了对应的浓度与最大互相关系数之间的线性关系。因此,在确定?#20302;?#21442;数的情况下,通过?#34903;?#19977;可以求出未知浓度的最大化相关系数,可以利用已知的线性关系求出对应的气体浓度。
在本实例中,经过双阈值随机共振?#20302;?#21518;传感器响应的特征值如表1所示,
表1经过双阈值随机共振?#20302;?#21518;传感器响应的特征值

在没有进行随机共振的情况下,如图4所示传感器响应值呈现不明显的线性关系。通过实验发现用相关系数进行表征的随机共振?#20302;?#21487;以增强检测精度,提高检测限。因此把获取的原始信号进行预处理得到输入信号,并代入双阈值随机共振?#20302;持?#35745;算互相关系数,在获取最优化双阈值的情况下可以得到如图8。图8是在阈值θ1=-0.22、θ2=1.08、噪声强度σ=[0,4]条件下的实验结果。通过图8可以看到在每个浓度下都发生了随机共振,并且每种浓度下的随机共振是不同的,可以清晰的看到随着浓度的增加,最大互相关系数也相应增大。表1中,CCC和σ代表的是经过随机共振?#20302;?#21518;最大互相关系数以及对应的噪声强度。图9是根据表1的数据得来,星点代表经过随机共振?#20302;?#21518;的传感器响应的特征值,直线是通过回归分析和曲线拟合出浓度和最大互相关系数之间的关系。拟合曲线为:y=0.0028x+0.2051。其中,标准差SD=0.0126,相关系数R=0.9687。通过图9经过阈值随机共振?#20302;?#21518;传感器的响应值呈现线性关系。拟合曲线的误差在可控范围内,可以认为浓度和最大互相关系数之间存在线性关系。
本发明对双阈值随机共振快速检测低浓度气体进行?#25628;?#31350;,利用自制的气敏传感器得到3-60ppb的响应值,采用互相关系数对双阈值随机共振进行表征,并且讨论了双阈值对随机共振?#20302;?#30340;影响以及如何选择最佳阈值。结果表明:当通过自动选取的最优双阈值时,最大互相关系数随着气体浓度的增大而增大,通过回归分析可以得到最大互相关系数和气体浓度之间的线性关系。双阈值随机共振在低浓度气体检测方面有比较明显的优势,这为检测低浓度气体提供了很好的方法,同时可以将此方法应用在气体生物传感器和电子鼻?#20302;場?/p>

关于本文
本文标题:一种基于双阈值随机共振的低浓度气体检测方法.pdf
链接地址:http://www.pqiex.tw/p-6124590.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 白酒代理赚钱不 苹果手机熊猫赚钱软件下载 360时时彩 双色球投注金额表 真人电玩捕鱼伯爵 pk10免费计划app 巫师三卖什么赚钱 奔驰宝马电玩城破解版 重庆时时加减算法 年轻人先赚钱再结婚