平码五不中公式规律
  • / 8
  • 下载费用:30 金币  

光纤模式匹配器的制作方法.pdf

关 键 ?#21097;?/dt>
光纤 模式 配器 制作方法
  专利查询网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
摘要
申请专利号:

CN201910031787

申请日:

20190114

公开号:

CN109557613A

公开日:

20190402

当前法律状态:

实质审查的生效

有效性:

审中

法?#19978;?#24773;: 实质审查的生效
IPC分类号: G02B6/255 主分类号: G02B6/255
申请人: 中国工程物理研究院激光聚变研究中心
发明人: 张昊宇;董克攻;颜冬林;林宏奂;郭超;王瑜英;李成钰;王波鹏;陶汝茂
地址: 621000 四川省绵阳市游仙区绵山路64号
优先权:
专利代理机构: 11371 代理人: 李丙林
PDF完整版下载: PDF下载
法律状态
申请(专利)号:

CN201910031787

授权公告号:

法律状态公告日:

20190426

法律状态类?#20572;?/td>

实质审查的生效

摘要

本发明提供的光纤模式匹配器的制作方法,涉及光纤模式匹配技术领域。该光纤模式匹配器的制作方法包括制作模场渐变的第一光纤,制作所述第一光纤的匹配锥区,制作所述匹配锥区与温度匹配光纤的耦合点,制作所述温度匹配光纤与第二光纤的耦合点。该光纤模式匹配器的制作方法结构简单,将原本两种熔点相差较大的光纤采用两次熔接过程,实现熔点温度梯度变化,满足高功率模式匹配的需求。

权利要求书

1.一种光纤模式匹配器的制作方法,其特征在于,包括以下步骤; 制作模场渐变的第一光纤; 制作所述第一光纤的匹配锥区; 制作所述匹配锥区与温度匹配光纤的耦合点; 制作所述温度匹配光纤与第二光纤的耦合点。 2.根据权利要求1所述的光纤模式匹配器的制作方法,其特征在于,所述制作模场渐变的第一光纤步骤中,包括对所述第一光纤拉锥,使所述第一光纤的模场渐变。 3.根据权利要求2所述的光纤模式匹配器的制作方法,其特征在于,所述拉锥步骤包括: 对所述第一光纤进行?#20013;?#21152;热,使所述第一光纤?#20013;?#24418;变; 将所述第一光纤的一端以第一速度移动,所述第一光纤的另一端以第二速度移动,使所述第一光纤的两端形成位移差,实现模场渐变。 4.根据权利要求3所述的光纤模式匹配器的制作方法,其特征在于,所述第一速度和所述第二速度的方向相同,大小不相等。 5.根据权利要求3所述的光纤模式匹配器的制作方法,其特征在于,拉锥后,所述第一光纤的两?#31169;?#38754;积?#20154;?#36848;第一光纤的中部的截面积更大。 6.根据权利要求5所述的光纤模式匹配器的制作方法,其特征在于,所述制作所述第一光纤的匹配锥区步骤中,将拉锥后的所述第一光纤,从所述中部切断,完成所述匹配锥区的制作。 7.根据权利要求1所述的光纤模式匹配器的制作方法,其特征在于,所述制作所述匹配锥区与温度匹配光纤的耦合点步骤中,包括熔接所述匹配锥区与所述温度匹配光纤。 8.根据权利要求7所述的光纤模式匹配器的制作方法,其特征在于,所述熔接步骤中,还包括设置可移动加热源; 在熔接所述匹配锥区与所述温度匹配光纤时,将所述可移动加热源向所述匹配锥区一侧偏移,实现对所述匹配锥区直接加热,对所述温度匹配光纤间接加热。 9.根据权利要求8所述的光纤模式匹配器的制作方法,其特征在于,所述制作所述温度匹配光纤与第二光纤的耦合点步骤中,在熔接所述温度匹配光纤与所述第二光纤时,将所述可移动加热源向所述温度匹配光纤一侧偏移,实现对所述温度匹配光纤直接加热,对所述第二光纤间接加热。 10.根据权利要求9所述的光纤模式匹配器的制作方法,其特征在于,在熔接所述匹配锥区与所述温度匹配光纤时,所述可移动加热源调节至第一预设温度阈值;在熔接所述温度匹配光纤与所述第二光纤时,所述可移动加热源调节至第二预设温度阈值;所述第一预设温度阈值高于所述第二预设温度阈值。

说明书


光纤模式匹配器的制作方法
技术领域


本发明涉及光纤模式匹配技术领域,具体而言,涉及一种光纤模式匹配器的制作
方法。


背景技术


目前,将两种光纤进行模式匹配,主要通过机械耦合的方式进行。机械耦合的模式
匹配由于使用高精度调节平台,无法确保耦合效?#39135;?#26102;稳定,且无法将机械耦合系统集成
成为单一器件。并且,使用光纤法兰头等装?#27665;?#21512;,无法提高耦合效率,导致整体光路耐受
功?#24335;系停?#26080;法制作耐受高功率的模式匹配器。


有鉴于此,设计制造出一种光纤模式匹配器的制作方法,提高耦合效率及长时间
的耦合稳定性,是目前光纤模式匹配技术领域中急需改善的技术问题。


发明内容


本发明的目的包括提供一种光纤模式匹配器的制作方法,操作简单,可以实现可
耐受高功?#30465;?#21487;工程化量产的光纤模式匹配器,产?#20998;?#37327;高,并且能有效提高耦合效率及稳
定性。


本发明改善其技术问题是采用以下的技术方案来实现的。


本发明提供的一种光纤模式匹配器的制作方法,包括以下步骤;


制作模场渐变的第一光纤;


制作所述第一光纤的匹配锥区;


制作所述匹配锥区与温度匹配光纤的耦合点;


制作所述温度匹配光纤与第二光纤的耦合点。


进一步地,所述制作模场渐变的第一光纤步骤中,包括对所述第一光纤拉锥,使所
述第一光纤的模场渐变。


进一步地,所述拉锥步骤包括:


对所述第一光纤进行?#20013;?#21152;热,使所述第一光纤?#20013;?#24418;变;


将所述第一光纤的一端以第一速度移动,所述第一光纤的另一端以第二速度移
动,使所述第一光纤的两端形成位移差,实现模场渐变。


进一步地,所述第一速度和所述第二速度的方向相同,大小不相等。


进一步地,拉锥后,所述第一光纤的两?#31169;?#38754;积?#20154;?#36848;第一光纤的中部的截面积
更大。


进一步地,所述制作所述第一光纤的匹配锥区步骤中,将拉锥后的所述第一光纤,
从所述中部切断,完成所述匹配锥区的制作。


进一步地,所述制作所述匹配锥区与温度匹配光纤的耦合点步骤中,包括熔接所
述匹配锥区与所述温度匹配光纤。


进一步地,所述熔接步骤中,还包括设置可移动加热源;


在熔接所述匹配锥区与所述温度匹配光纤时,将所述可移动加热源向所述匹配锥
区一侧偏移,实现对所述匹配锥区直接加热,对所述温度匹配光纤间接加热。


进一步地,所述制作所述温度匹配光纤与第二光纤的耦合点步骤中,在熔接所述
温度匹配光纤与所述第二光纤时,将所述可移动加热源向所述温度匹配光纤一侧偏移,实
现对所述温度匹配光纤直接加热,对所述第二光纤间接加热。


进一步地,在熔接所述匹配锥区与所述温度匹配光纤时,所述可移动加热源调节
至第一预设温度阈值;在熔接所述温度匹配光纤与所述第二光纤时,所述可移动加热源调
节至第二预设温度阈值;所述第一预设温度阈值高于所述第二预设温度阈值。


本发明提供的光纤模式匹配器的制作方法具有以下几个方面的


有益效果:


本发明提供的光纤模式匹配器的制作方法,先制作模场渐变的第一光纤,再制定
第一光纤的匹配锥区,通过匹配锥区与温度匹配光纤耦合、温度匹配光纤与第二光纤耦合,
从而实现第一光纤和第二光纤的耦合。该光纤模式匹配器的制作方法操作简单,可以实现
可耐受高功?#30465;?#21487;工程化量产的光纤模式匹配器,产?#20998;?#37327;高,并且能有效提高耦合效率及
稳定性。


附图说明


为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附
图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对
范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这
些附图获得其他相关的附图。


图1为本发明具体实施例提供的光纤模式匹配器的制作方法的流程框图;


图2为本发明具体实施例提供的光纤模式匹配器的制作方法的拉锥原理示意图;


图3为本发明具体实施例提供的光纤模式匹配器的制作方法的制作匹配锥区的应
用场景示意图;


图4为本发明具体实施例提供的光纤模式匹配器的制作方法的制作匹配锥区与温
度匹配光纤耦合点的应用场景示意图。


图标:110-石英光纤;111-夹具;113-加热源;115-受热点;120-匹配锥区;130-温
度匹配光纤。


具体实施方式


为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例
中的附图,对本发明实施例中的技术方?#38468;?#34892;清楚、完整地描述,显然,所描述的实施例是
本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施
例的组件可以以各种不同的配置来布置和设计。


因此,以下对在附图中提供的本发明的实施例的详?#35813;?#36848;并非旨在限制要求保护
的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通
技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范
围。


在本发明的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基
于附图所示的方位或位置关系,或者是本发明产品使用时惯常摆放的方位或位置关系,或
者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本发明和简化描述,
而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因
此不能理解为对本发明的限制。


本发明的“第一”、“第二”等,仅仅用于在描述上加以区分,并没有特殊的含义。


在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、
“安装”应做广义理解,例如,可以是固定连接,?#37096;?#20197;是可拆卸连接,或一体地连接;可以是
直接相连,?#37096;?#20197;通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况
理解上述术语在本发明中的具体含义。


图1为本发明具体实施例提供的光纤模式匹配器的制作方法的流程框图,请参照
图1。


本实施例提供的一种光纤模式匹配器的制作方法,主要包括以下步骤:


S1,制作模场渐变的第一光纤。


S2,制作第一光纤的匹配锥区。


S3,制作匹配锥区与温度匹配光纤的耦合点。


S4,制作温度匹配光纤与第二光纤的耦合点。


其中,具体?#27169;琒1制作模场渐变的第一光纤步骤中,包括对第一光纤拉锥,使第一
光纤的模场渐变。拉锥步骤具体包括:


对第一光纤进行?#20013;?#21152;热,使第一光纤?#20013;?#24418;变,并保持该温度。将第一光纤的一
端以第一速度移动,第一光纤的另一端以第二速度移动,使第一光纤的两端形成位移差,实
现模场渐变。容易理解,第一速度和第二速度优选为方向相同,大小不相等。该拉锥步骤可
以通过光纤熔接机和异速推进的夹具完成,光纤熔接机具有?#20013;?#21152;热功能,用于对第一光
纤?#20013;?#21152;热,并使第一光纤?#20013;?#21457;生形变。异速推进的夹具包括两个,两个分别设置在第一
光纤的两端,两个夹具的移动速度不一致,用于实现第一光纤两侧位移速度差,实现第一光
纤渐变区的产生。


拉锥后,第一光纤发生形变。第一光纤的两?#31169;?#38754;积比第一光纤的中部的截面积
更大,类似哑铃状,呈两边粗、中间细的形状。


S2,制作第一光纤的匹配锥区步骤中,将拉锥后的第一光纤,从中部切断,完成匹
配锥区的制作。由于拉锥后,第一光纤呈两端光纤较粗、中间光纤较细的姿态。使用光纤切
割刀,在中部光纤较细的地方切割,将其完全切断,即可完成第一光纤的匹配锥区的制作。


S3,制作匹配锥区与温度匹配光纤的耦合点步骤中,包括熔接匹配锥区与温度匹
配光纤。熔接步骤中,还包括设置可移动加热源。由于第一光纤与温度匹配光纤存在一定熔
点差异,制作此类不同熔点光纤的耦合点,需要使用有特殊功能的光纤熔接机,即该熔接机
需要满足熔接热源位置可调的要求,以便于对不同熔点的光纤进行加热。


具体?#27169;?#22312;熔接匹配锥区与温度匹配光纤时,将可移动加热源向匹配锥区一侧偏
移,即向熔点较高的光纤一侧偏移,实现对匹配锥区直接加热,对温度匹配光纤间接加热。


S4,制作温度匹配光纤与第二光纤的耦合点步骤中,与S3步骤类似地,在熔?#28216;?#24230;
匹配光纤与第二光纤时,将可移动加热源向温度匹配光纤一侧偏移,实现对温度匹配光纤
直接加热,对第二光纤间接加热。


需要说明的是,在熔接匹配锥区与温度匹配光纤时,可移动加热源调节至第一预
设温度阈值;在熔?#28216;?#24230;匹配光纤与第二光纤时,可移动加热源调节至第二预设温度阈值;
第一预设温度阈值高于第二预设温度阈值。匹配锥区与温度匹配光纤的熔接、温度匹配光
纤与第二光纤的熔接,两个熔接过程中,可移动加热源的加热温度并不相同,加热温度需要
根据所用光纤熔接机进?#26800;?#33410;,对于不同材质的光纤、两种熔点差不一样的光纤,其加热温
度均不一样,可以灵活调整设置,这里不作具体限定。


本实施例中,温度匹配光纤130的熔点应当满足大于第二光纤的熔点并且小于第
一光纤的熔点。可选地,第一光纤采用石英光纤110,第二光纤采用氟化物光纤或硫化物光
纤,温度匹配光纤130采用碲酸盐光纤。?#27604;唬?#28201;度匹配光纤130还可以采用其他材质的光
纤。其具体的操作过程如下:


如图2,制作模场渐变石英光纤110,采用拉锥的方式实现石英光纤110模场渐变,
拉锥所用设备为光纤熔接机。光纤熔接机具有?#20013;?#21152;热功能,能够用于?#20013;?#21152;热石英光纤
110,使石英光纤110?#20013;?#24418;变。此外,?#20849;?#29992;了两个异速推进的夹具111,两个夹具111分别
夹持在石英光纤110的两端,用于实现石英光纤110两侧的位移速度差,实现石英光纤110渐
变区的产生。优选?#27169;?#26412;实施例中,光纤熔接机使用藤仓公司LZM系列熔接机,用于处理石英
光纤110。首先将石英光纤110紧固夹持在LZM系列熔接机中,确保石英光纤110不产生额外
位移。其次,优选地,石英光纤110的受热点115在中间位置,加热源113位于中间部位,加热
石英光纤110并使其软化形变,并保持一定温度,避免停止加热导致的石英玻璃凝固。然后,
同时推进两端的两个紧固夹具111,但两侧夹具111推进速度不一致。可选地,两个夹具111
同时往左侧移动,左侧光纤夹具111移动较快,右侧光纤夹具111移动?#19979;?#21363;可产生模场渐
变石英光纤110。或者,两个夹具111同时往右侧移动,右侧光纤夹具111移动较快,左侧光纤
夹具111移动?#19979;部?#20135;生模场渐变石英光纤110。


如图3,模场渐变石英光纤110制作完成后,光纤呈现出类似哑铃形状,即两端光纤
较粗,中间光纤较细,使用光纤切割刀,在中部光纤较细处切割,如图3中箭头所示,将其完
全切断,即可完成石英光纤110的匹配锥区120制作。


如图4,制作石英光纤110的匹配锥区120与温度匹配光纤130耦合点。由于石英光
纤110与温度匹配光纤130存在一定熔点差异,制作此类不同熔点光纤的耦合点,需要使用
有特殊功能光纤熔接机,该光纤熔接机需要满足熔接热源位置可调的要求。熔接石英光纤
110的匹配锥区120与温度匹配光纤130时,需要将熔接机的加热源113调节向石英光纤110
匹配锥区120一侧偏移,加热源113的位置如图4中箭头所示,实?#31181;?#25509;加热匹配锥区120,间
接加热温度匹配光纤130的过程。


同理,S4制作温度匹配光纤130与氟化物光纤耦合点,操作过程和S3步骤相似,在
熔?#28216;?#24230;匹配光纤130与氟化物光纤时,将熔接机的加热源113向温度匹配光纤130一侧偏
移,实现对温度匹配光纤130直接加热,对氟化物光纤间接加热。S3和S4步骤的两个过程中,
熔接机的热源温度并不相同,热源温度需要根据所用熔接机进?#26800;?#33410;,不能一概而论,这里
不作具体限定。


综?#32420;?#36848;,本发明提供的光纤模式匹配器的制作方法具有以下几个方面的有益效
果:


本实施例提供的光纤模式匹配器的制作方法,先制作模场渐变的第一光纤,再制
定第一光纤的匹配锥区120,通过匹配锥区120与温度匹配光纤130耦合、温度匹配光纤130
与第二光纤耦合,从而实现第一光纤和第二光纤的耦合。该光纤模式匹配器的制作方法操
作简单,可以实现可耐受高功?#30465;?#21487;工程化量产的光纤模式匹配器,产?#20998;?#37327;高,并且能有
效提高耦合效率及稳定性。


通过本发明提供的光纤模式匹配器的制作方法生产出的光纤模式匹配器,通过引
入锥状石英光纤110及温度匹配光纤130,在石英光纤110与氟化物光纤中实现熔点温度梯
度变化,?#26723;?#20809;纤熔接过程中,两段光纤熔化所需的能量差,以实现可耐受高功?#30465;?#21487;工程
化量产的石英光纤110与氟化物光纤模式匹配器。且经过试验验证,可满足高功率石英光纤
110与氟化物光纤模式匹配的需求,能实现30W泵浦功率通过。


以?#32420;?#36848;仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技
术人员来说,本发明可以有各种更改、组合和变化。凡在本发明的精神和原则之内,所作的
任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。


关于本文
本文标题:光纤模式匹配器的制作方法.pdf
链接地址:http://www.pqiex.tw/p-6153372.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网?#31350;头?/a> - 联系我们

[email protected] 2017-2018 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备17046363号-1 
 


收起
展开
平码五不中公式规律 沈阳盛京棋牌完整版 幸运28是什么地方彩票 福建11选5开奖走势图 股票融资贷款 青海11选5前三和值表 炒股搞笑图片 安徽11选5限号规则 福彩3d开机号历史记录 沈阳棋牌官方下载 七星彩走势图预测杀号